apex septic design

P.O. Box 11247
Santa Rosa, CA 95406

(707)322-5827
apexsepticdesign@gmallcom

Apmil 08, 2016

YF SANTA ROSA
P.O. BOX 1678 SANTA ROSA. CA 95402

JUL 202016

City of Santa Rosa

DEPARTMENT OF COMMUNITY DEVELOPMEN?

Re: Site evaluation at 1791 and 1793 Fulton Road in Santa Rosa, CA 95403 APN: 034-091-023

I conducted site and soil evaluations at the subject parcel on lanuary 21, 2016 at 11:30 a.m. to determine the site sutabilty to install a new code compliant septic system. The parcel has .39 acre of land, and it contains a main dwelling, a guest house, and a workshop.

The concrete septic tank was observed during the site visit. It is located approximately 2 feet west from the main dwelling which is too close Iminimum setback from the septic tank to the house is 5 feeth. There is a crack on top of the septic tank. The wastewater level inside the septic tank's outlet compartment was approximately 2 to 3 inches above the outlet pipe; this indicated that the leach lines hasn*t been working in accepting wastewater.

I augered two holes to observe the soil (see site map for locations). Auger hole \#1 has friable sandy loam soil from top to 42 inches; groundwater inside the hole was at 15 inches from the ground surface. Auger hole tiz has friable, gravelly sandy loam soll from top to 28 inches; below, the soll is very firm, gravelly clay loam from 28 to 35 inches; groundwater was observed at 16 inches from the ground surface. The soll is identified as Huichica loam in the USDA's soll survey map.

The existing septic system is failing because the leach lines wouldn't accept any more wastewater; a repair to the existing septic system will unlikely work because of the septic system's old age and high groundwater. There isn't any space to install a new septic system due to the sethack to the property lines (5^{\prime} setback for standard system and 15^{\prime} setback for innovative septic system), building (5^{\prime} setback for standare system and 15^{\prime} setback for innovative septic system), water well (50' setback for a repair septic system and 100 setback for a code complant septic system), and road drainage ditch 25^{4} setback for a repair septic system and 50 setback for a code compliant septic system). Furthermore, the site is suitable to install nether a standard in-ground septic sustem because it would require at least 72 inches separation to groundwater (0 to $72^{\prime \prime}$ clearance), a subsurface drip system because it would require 36 inches of separation to groundwater (0 to $36^{\prime \prime}$ clearance), nor a mound sustem because it would need at least 24 inches of separation to groundwater (o to $24^{\prime \prime}$ clearance).

For those reasons Imentioned above, recommend this subect parcel be connected to the city sewer.

For further information or questions I can be reached at 707) 322-5827.
Respectully

Tai Nguyen
Registered Environmental Heaith Specialist \#717\%

$$
\begin{gathered}
\text { CITY OF SANTA } \\
\text { PAO. BOX } 16 \\
\text { SANTA ROSA } \\
\text { JUL } 2 \\
\text { DEPARTME } \\
\text { COMMUNITYDEVF... }
\end{gathered}
$$

MAP L	GEND		MAP INFORMATION
Area of interest (ADI)	,	Spoil Area	The soil surveys that comprise your AOI weree mapped at 1:20,000.
\square Area of nferestst (AOI)	-	Stony Spot	Waming: Soil Map may not be valld af this scale.
Sollts, Soll Map Unit Polycons	4	Very Stony Spot	Enlargement of maps beyond the scale of mapping can cause
. Soil Map Unit Lines	v	Wet Spot	misunderstanding of the delaill of mapping and accuracy of soiltine
Soll Map Unit Pogints	Δ	Other	placement. The maps do not show the small areas of contrasting solls that could have been shown at a more detalled scale.
Special Point Featur	Water Featureas		ase rely on the bar scale on each map sheet for map
6) Blowout			measurements.
Q Bomow Pit	Transportation		Source of Map: Natura Resources Conservation Serivice
C Clay Spot	H	Ralls	Web Soil Suryey URL.' http://websollsurvey.nrcs. usda.gov
Closied Deprizssion	-	Interstale Highways	Maps from the Web Soll Survey are based on the Web Mercator
\% Gravel pit	xhem	US Routes	projegtion, which preseives direction and shape but distorits '*
Gravelly spot		Major Roads	distance and area, A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate
- Landifil		Local Rods	calculations of distance or area are required.
A Lava flow	Backgr		This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
4. Marsh or swamp	械	Aerial Photography	
\%. Mine or Quary			Soil Survey Area: Sonoma County, California Survey Area Data: Version 9, Sep 30, 2015
- Miscellaneous Water			Soll map unifs are labeled (as space allows) for map scales 1:50,000
(4) Perennial Water			orlarger.
Rock Outcrop			Date(s) aerial images were photographed: Aug 14, 2011-Aug
\pm Saline spot			15; 2011.
$\because \%$ Sandy Spot			The orthophoto or other base map on which the soll lines were
- Severely Eroded Spot			- imagery displayed on these maps. As a result, some minor shititing
4 Sinkhole			of map unit boundaries may be evident.
3. Slide or Slip			
\% Sodic Spot			

Map Unit Legend

Y,	Sonoma Count	liforna (CAOg7)	
\% Map Urit Symbol.	$1{ }^{\text {a }}$, Map Unit lame:	W, Acres MAOI	Wheren
HiA	Hishica loam, 0 to 2 percent slopes	0.6	100.0\%
Totals for Area of interest		0.6	100.0\%

\therefore Profile: Auger Hole 1				Average Ground Slope:			0-1\%	
Depth	Munsell Color.	\% Rock	Texture	Structure	Consistency	Moist	Pores	Roots
0-42"	Brown	0\%	Sandy Loam	Blocky	Friable	Damp to Seepage	Many	Few
Mottling:		Reduction \square Oxidation \square Depth to groundwater:					Perc depth:	
Other: Groundwater at 15 inches								

Profile: Auger Hole 2					Average Ground Slope: $0-1 \%$			
Depth	Munsell Color	\% Rock	Texture	Structure	Consistency	Moist	Pores	Roots
0-28"	Brown	10-15\%	Gravelly Sandy Loam	Blocky	Friable	Damp to Seepage	Many	Few
28-35"	Brown	10-15\%	Gravelly Clay Loam	Blocky	Very Firm	Seepage	Few	None
Mottling:		Reduction \square Oxidation \square Depth to groundwater:					Perc depth:	
Other: Groundwater at 16 inches								

Abbreviations:
USDA Texture: Gravel=G, Sand=S, Loamy Sand=LS, Sandy Loam=SL, Sandy Clay Loam=SCL, Sandy Clay=SC, Sill Loam=SIL, Loam=L, Clay Loam=CL, Silty Clay Loam=SiCL, Clay=C

Structure: \quad Granular=G, Platy $=\mathrm{p}$, Blocky $=\mathrm{B}$, Prismatic $=\mathrm{Pr}$, Massive $=\mathrm{M}$, Columnar= $=\mathrm{C}$
Consistency: Loose=L, Very Friable=VFr, Friable $=$ Fr, Fimm $=$ F, Very Fim=VF, Extremely Fim=EF, Solid (BH refusal) $=$ S
Moisture: \quad Dry=Dr, Damp=D, Very Damp=VD, Saturated=S, Seepage=Se

