2019 Drinking Water Quality Report Update

Board of Public Utilities Meeting June 4, 2020 Tony Llamas, Water Quality Supervisor

Compliance with the Safe Drinking Water Act (SDWA)

Federal Rules – Public drinking water quality:

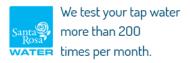
- Total Coliform Rule
- Disinfectants/Disinfection By-Products Rule
- Lead and Copper Rule
- Groundwater Rule

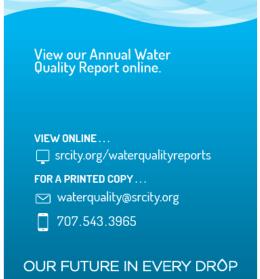
State Regulations - Cross Connection Control

Annual Water Quality Report provides:

- Water system information
- Testing Information
- Definitions
- How to Read Section
- Water Quality Results
- Rebuild Update

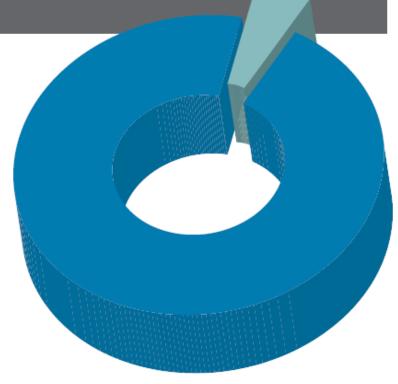
Water Quality Report Distribution


- Press Democrat Ads
- Bill Insert
- Email and E-newsletter
- Social Media
- Mailings
- Printed copies

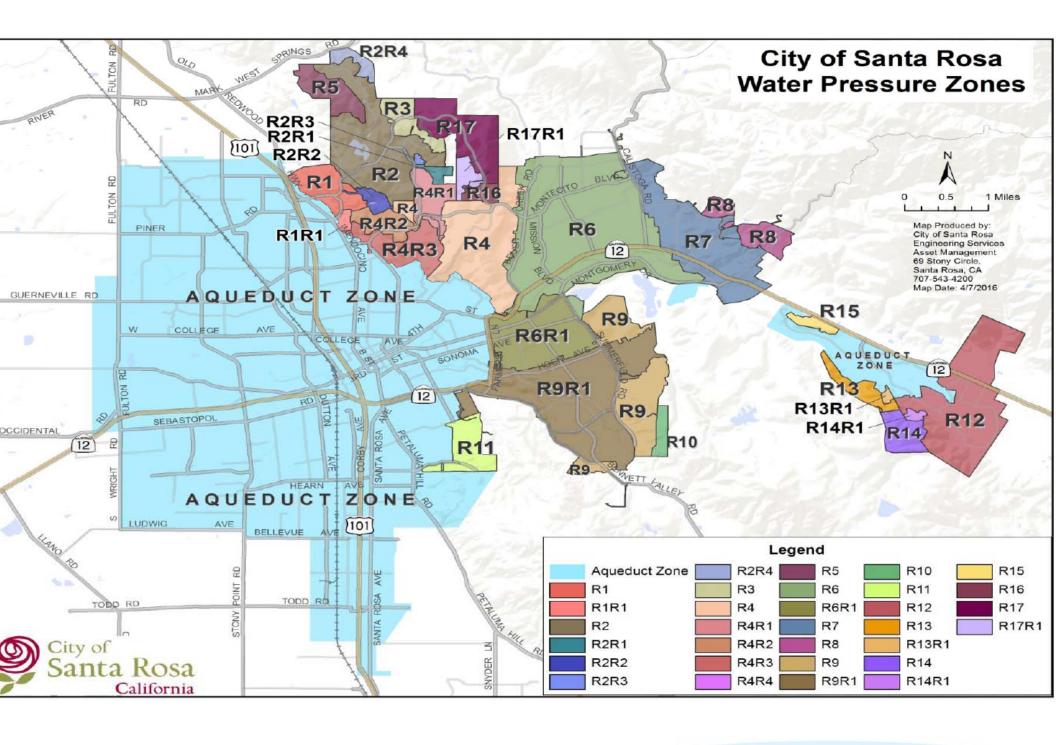


OUR FUTURE IN EVERY DROP

Quality matters.

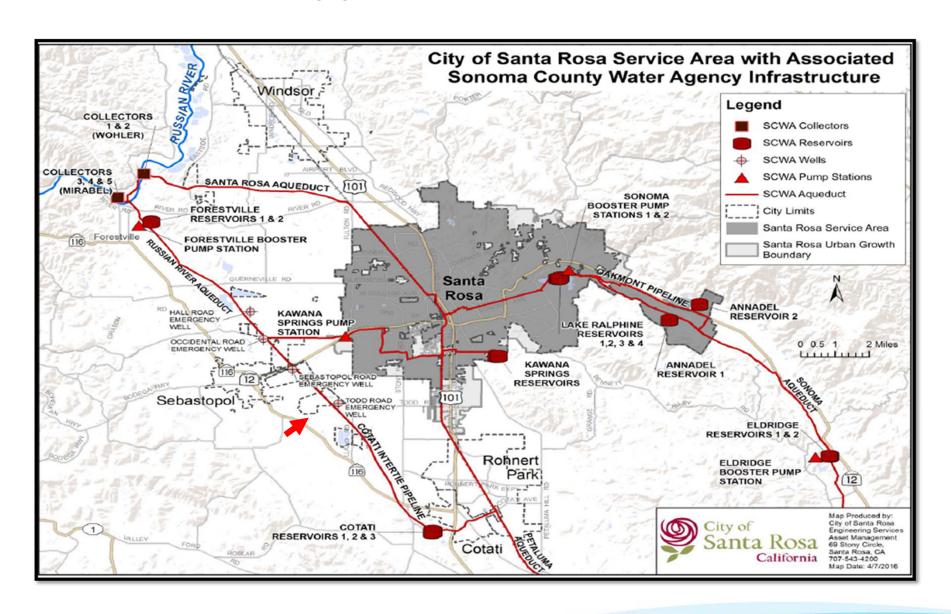


Water Supply Portfolio


As a Santa Rosa Water customer you are connected to Santa Rosa's public water system. The water supplied to homes and businesses is a combination of surface water from the Russian River and local groundwater.

95% Water Agency (Russian river)

5% Groundwater



Sonoma Water Transmission Lines

90 miles of pipelines from 12 to 54 inches

Field Sampling covers all areas of our water system

Rebuild Sampling Update

Water Quality in Fountaingrove

Water quality in the Fountaingrove neighborhood that was impacted by the 2017 wildfires continues to meet all state and federal safe drinking water standards. Following the successful restoration of water quality in this area and the lifting of the drinking water advisory on October 11, 2018, Santa Rosa Water, in consultation with the California Division of Drinking Water and the U.S. Environmental Protection Agency, completed an extensive, one-year sampling plan to confirm repairs to the portion of the system were effective.

Under this plan, Santa Rosa Water has taken over 500 post-fire water quality samples inside the impacted area. Data continues to confirm that repairs were effective in removing the contamination and water quality meets all standards for safe drinking water. Upon completion of the robust sampling plan in October 2019, Santa Rosa water continues to ensure the safety of our community's drinking water through routine water quality sampling and system flushing.

Farmers Lane Well -Water **Treatment** Plant Samples

Sonoma County Water Agency - Caissons 1 thru 6 - 2019 Water Quality Report

CLARITY OF WATER FROM	MOI	11-11-		ample				0.1000000000000000000000000000000000000		
GROUNDWATER SOURCES	MCL	Units	Fre	quency	average 0.035	average 0.044	average 0.044	average 0.045	average 0.044	average 0.037
Turbidity (1)	5 (3)	NTU	con	tinuous	range	range	range	range	range	range
Turblatty	3	NIO	Con	unuous	(0.026 - 1.27)	(0.028 - 2.0)	(0.032 - 0.091)	INTERNATION CONTROL TO THE STATE OF	(0.039 - 2.0)	(0.033 - 2.0)
	<u> </u>	MCL			Inits	# Samples	Diete	ibution Sustam	Monitoring for	10.10
MICROBIOLOGICAL - Coliform Bacteria	< 2 nosit	tive samples pe	er month		ms/100ml	537	Distr		samples	2016
			an one and an analysis		STATE OF THE STATE					2004
DISINFECTANT - Total Chlorine Residual	>	95% per monti	n	detectat	ole residual	534	Detecta	able residual in	100% of sample	s taken
Total Trihalomethanes (2) - Tank Samples		0.080	_	n	ng/L	72	average = 0.0	149 mg/L rang	e = (0.0069 mg/l	L - 0.0241 mg/L)
VOLATILE ORGANIC COMPOUNDS	Units	STATE	DLR	PHG	Caisson 1	Caisson 2	Caisson 3	Caisson 4	Caisson 5	Caisson 6
Section 64444 - Table A		MCL		{ MCLG }	9-Sep-19	9-Sep-19	10-Sep-19	10-Sep-19	10-Sep-19	9-Sep-19
Benzene	mg/L	0.001	0.0005	0.00015	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	mg/L	0.0005	0.0005	0.0001	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene (o-DCB)	mg/L	0.6	0.0005	0.6	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene (p-DCB)	mg/L	0.005	0.0005	0.006	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane (1,1-DCA)	mg/L	0.005	0.0005	0.003	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane (1,2-DCA)	mg/L	0.0005	0.0005	0.0004	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene (1,1-DCE)	mg/L	0.006	0.0005	0.01	ND	ND	ND	ND	ND	ND
cis-1,2-Dichlorethylene (c-1,2-DCE)	mg/L	0.006	0.0005	0.013	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene (t-1,2-DCE)	mg/L	0.01	0.0005	0.05	- ND	ND	ND	ND	ND	ND
Dichloromethane (Methylene Chloride)	mg/L	0.005	0.0005	0.004	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	mg/L	0.005	0.0005	0.0005	ND	ND	ND	ND	ND	ND
1,3-Dichloropropene	mg/L	0.0005	0.0005	0.0002	ND	ND	ND	ND	ND	ND
Ethylbenzene	mg/L	0.3	0.0005	0.3	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE) (4)	mg/L	0.013	0.003	0.013	ND	ND	ND	ND	ND	ND
Monochlorobenzene (Chlorobenzene)	mg/L	0.07	0.0005	0.07	ND	ND	ND	ND	ND	ND
Styrene	mg/L	0.1	0.0005	0.0005	ND	ND	ND	ND	ND	ND -
1,1,2,2-Tetrachloroethane	mg/L	0.001	0.0005	0.0001	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	mg/L	0.005	0.0005	0.00006	ND	ND	ND	ND	ND	ND
Toluene	mg/L	0.15	0.0005	0.15	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	mg/L	0.005	0.0005	0.005	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane (1,1,1-TCA)	mg/L	0.2	0.0005	1.0	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane (1,1,2-TCA)	mg/L	0.005	0.0005	0.0003	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	mg/L	0.005	0.0005	0.0017	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane (Freon 11)	mg/L	0.15	0.005	1.3	ND	ND	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	mg/L	1.2	0.01	4	ND	ND	ND	ND	ND	ND
Vinyl Chloride (VC)	mg/L	0.0005	0.0005	0.00005	ND	ND	ND	ND	ND	ND
Xylenes (m,p, & o)	mg/L	1.75	0.0005	1.8	ND	ND	ND	ND	ND	ND

Caisson 1

Caisson 2

Caisson 3

Caisson 4

Caisson 5

Caisson 6

2019 Water Quality Sampling Results

				SONOMA	A WATER ¹	SANTA	ROSA ²	
Substance (Parameter)	Public Health Goal (MCLG)	DLR	Maximum Contaminant Level	Range Detected	Reporting Value	Range Detected	Reporting Value	Major Source In Drinking Water
RIMARY STANDARDS Detected I	Regulated Contaminan	ts with Primary	MCLs or MRDLs					
HOREANIC CONTAMINANTS Fluoride (pom) ²	1	0.1	4.0	ND	ND	0.19-0.22	0.2	Erosion of natural deposits
								Runoft/leaching from fertilizer use:
Nitrate (as N ppm)	1	0.4	1	ND	ND	ND	ND	leaching from septic tanks and sewage; erosion of natural deposits
OSTRIBUTION SYSTEM DETECTION	ON\$ 2019							
MICROBIOLOGICAL CONTAMINANTS								
Total Coliform Bacteria from Santa Rosa Distribution System	0		5% of monthly samples	NA	NA	0%-0.61%	0%	Naturally present in the environment
Total Trihalomethanes (ppb)	NS		80	NA	NA	19.2-35.4	28.6	By-product of drinking water chlorination
Haloacetic Acids (ppb)	NS		60	NA	NA	6.8-15.0	9.5	By-product of drinking water chlorination
Disinfectant-Free Chlorine (Cl ₂) Residual (ppm)	MRDLG as Cl, 4.0		MRDLG as Cl ₂ 4.0	NA	NA	0.25-1.86	1.06	Disinfectant to control microbes
pH (units) prior to pH adjustment	NS		NS	7.35-7.61	7.4	7.69-8.5	8.2	Sodium Hydroxide addition
Benzene (ppb)	0.15	.5	1	ND	ND	ND	ND	Discharge from plastics, dyes and nylon factories; leaching from gas storage tanks and landfills
LEAD/COPPER RULE 2019 DATA	Monitored at cus	stomer's tap.	# of sites exceed	ding action level	=0 #of sample	es collected=50	# of schools sai	
Copper (ppm)	0.3	0.05	1.3 (AL)	ND	ND	0.011-0.171	0.105*	Internal corrosion of household
	0.2	5	15 (AL)	ND	ND	0.2-5.3	1.8*	plumbing; erosion of natural deposits
			vel=0 # of samp					
EKE SENYGING IN SCHOOLS ECONDARY STANDARDS Aesthe	# of sites exceed	fing action le	vel=0 # of samp	iles collected=3 trol Board's Divisio	133 # of schools n of Drinking Water	sampled=31		
END SIMPLINE IN SCHOOLS RECONDARY STANDARDS Aresthe REGULATED CONTAMINANTS WITH SECUNDARY MILE Threshold Odor Number	# of sites exceed	fing action le	vel=0 # of samp Water Resources Con	iles collected=3 trol Board's Divisio	133 # of schools n of Drinking Water	sampled=31	ND	Naturally occurring organic materials
EXECUTION STANDARDS Assibe REGULATED CONTAINMANTS WITH SECONDARY MCLS [Threshold Odor Number (TOW) at 60°C	# of sites exceed fic Standards Establish There are no add	fing action let hed by the State rerse health e	rel=8 # of samp Water Resources Con ffects from exceed	iles collected=3 trol Board's Divisio ling the seconda	33 # of schools n of Drinking Water ry (aesthetic) sta	sampled=31 odards.		
EXPENSIVE RECOMDARY STANDARDS Assiste REQUIRATE CONTAMINATES REQUIRATE CONTAMINATES Fireshold Odor Number TOWN at 60°C Chloride (ppm)	# of sites exceed tic Standards Establish There are no adv NS	fing action let hed by the State rerse health e	rel=0 # of samp Water Resources Con Hocts from exceeds	iles collected=3 trol Board's Divisio ling the secondar ND	33 # of schools n of Drinking Water ry (aesthetic) sta ND	sampled=31 odards. NO	ND	Run-off/leaching from natural deposits
CARE SEMPCINE R COMBARY STANDARDS Aesther REGISLATED COSTOMINANTS BITH SECONDARY MCLS [Threshold Odor Number [TOWN at 600" C Chloride (ppm) Sulfate (ppm) Specific Conductance	# of sites exceed tic Standards Establish There are no adv NS	ling action let hed by the State rorse health a	rel=0 # of samp Water Resources Con ffects from exceed 3 500	trel Beard's Divisio ling the seconda ND 4.7-5.6	# of schools n of Drinking Water ry (aesthetic) sta ND 5.0	sampled=31 odards. NO 17.6-23.8	ND 20.7	Run-off/leaching from natural deposits Run-off/leaching from natural deposits
CONTINUE TO THE PROPERTY OF T	# of sites exceed fic Standards Establish There are no add NS NS	ling action let hed by the State rorse health a	vel=0 # of samp Water Resources Con ffects from exceed 3 500 500	itri Board's Divisio Ing the seconda ND 4,7-5,6 12-14	# of schools n of Brinking Water ry (aosthotic) state ND 5.0 12.5	ndards. NO 17.6-23.8 ND-1.3	ND 20.7 0.65	Run-off/leaching from natural deposits Run-off/leaching from natural deposits Substances that form ions when in water
CERT SEMPCINE IN SCHOOLS IN SCHOOLS RECOMMENT STANDARDS Aesthe REGILATED CONTEMPARATS WITH SECONDARY HOLE Threshold Odor Number (10N) at 60°C Chloride (ppm) Selfiate (ppm) Specific Conductance (umhas/sm) Total Dissolved Selids (ppm)	# of sites exceed tic Standards Establish There are no adv NS NS NS NS	ling action let hed by the State rorse health a	rel=0 # of samp Water Resources Con Illects from exceed 3 500 500 1600	trel Board's Division ND 4,7-5,6 12-14 210-250	# of schools of Drinking Water ry (aesthetic) state ND 5.0 12.5 227	ndards. ND 17.6-23.8 ND-1.3 440-520	ND 20.7 0.65 480	Run-off/leaching from natural deposits Run-off/leaching from natural deposits Substances that form ions when in wate Run-off/leaching from natural deposits
CERT SEMPCINE IN SCHOOLS IN SCHOOLS RECOMMENT STANDARDS Aesthe REGISLATED CONTEMPARATS WITH SECONDARY HOLIS Threshold Odor Number (10N) at 60°C Chloride (ppm) Sulfate (ppm) Specific Conductance (umhas/sm) Total Dissolved Solids (ppm) Color (units)	# of siles exceed fits Standards Establish There are no adv NS NS NS NS NS NS	ling action let hed by the State rorse health a	rol=0	Ites collected=3 trel Board's Bivisio ling the secondar ND 4.7-5.6 12-14 210-250 140-160	# of schools of Drinking Water cy (assthutic) state MD	mdants. ND 17.6-23.8 NO-1.3 440-520 340-360	ND 20.7 0.65 480 350	Run-eff/leaching from natural deposits Run-eff/leaching from natural deposits Substances that form ions when in wate Run-eff/leaching from natural deposits Naturally occurring organic materials
CONTROL OF THE PROPERTY OF T	# of sites exceed file Standards Establish There are no adv NS NS NS NS NS NS NS NS NS N	fing action feel hed by the State recise health e 1 0.5	rol=0 # of samp Water Resources Con Elects from exceed 3 500 500 1600 1000 15	Ites collected=3 trel Board's Division ND 4.7-5.6 12-14 210-250 140-160 ND-4.0	### ### ##############################	ndards. ND 17.6-23.8 ND-1.3 440-520 340-360 ND	ND 20.7 0.65 480 350 ND	Run-eff/leaching from natural deposits Run-eff/leaching from natural deposits Substances that form ions when in wate Run-eff/leaching from natural deposits Naturally occurring organic materials
CONTRACTOR OF THE PROPERTY OF	# of sites exceed file Standards Establish There are no adv NS NS NS NS NS NS NS NS NS N	fing action feel hed by the State recise health e 1 0.5	rol=0 # of samp Water Resources Con Elects from exceed 3 500 500 1600 1000 15	Ites collected=3 trel Board's Division ND 4.7-5.6 12-14 210-250 140-160 ND-4.0	### ### ##############################	ndards. ND 17.6-23.8 ND-1.3 440-520 340-360 ND	ND 20.7 0.65 480 350 ND	Run-eff/leaching from natural deposits Run-eff/leaching from natural deposits Substances that form ions when in wate Run-eff/leaching from natural deposits Naturally occurring organic materials
CERT SEMPCINE IN SCHOOLS IN SCHOOLS RECOMMENT STANDARDS Aesthe REGINATED CONTINUABATS WITH SECONDARY HOLE Threshold Odor Number (100A) at 60°C Chloride (ppm) Specific Conductance (umhas/sm) Total Dissolved Solids (ppm) Color (umits) Manganese (ppb) MARGHERHEL CONSTITUENTS Sedium (ppm)	# of siles exceed fits Standards Establish There are no adv NS NS NS NS NS NS NS NS NS N	fing action feel hed by the State recise health e 1 0.5	rol=0 # of samp Water Resources Con Elects from exceed 3 500 500 1600 1000 15 50	ites collected=3 trel Board's Division Ing the seconda ND 4.7-5.6 12-14 210-250 140-160 ND ND	### ### ##############################	mdards. ND 17.6-23.8 NO-1.3 440-520 340-360 ND 1.3-16.8	ND 20.7 0.65 480 350 ND 3.6	Run-off/leaching from natural deposits Run-off/leaching from natural deposits Substances that form ions when in wate Run-off/leaching from natural deposits Naturally occurring organic materials Run-off/leaching from natural deposits Solum when to the set award invator.
CERT SEMPCINE IN SCHOOLS IN SCHOOLS RECOMMENT STANDARDS Aesthe REGINATED CONTEMPARATS WITH SECONDARY HOLE Threshold Odor Number (10N) at 60°C Chloride (ppm) Specific Conductance (unthas/cm) Total Dissolved Solids (ppm) Color (units) Manganese (pph) ADDITIONAL CONSTITUENTS Sedium (ppm) Total Hardness CaCO, (ppm)	# of siles exceed file Standards Establish There are no adv NS NS NS NS NS NS NS NS NS N	fing action feel hed by the State recise health e 1 0.5	rol=0 # of samp Water Resources Con Elects from exceed 3 500 500 1600 1000 15 50	ites collected=3 trel Board's Division Ing the seconds ND 4.7-5.6 12-14 210-250 140-160 ND 7.8-9.3	### ### ##############################	ndards. ND 17.6-23.8 NO-1.3 440-520 340-360 ND 1.3-16.8 51.1-53.5	ND 20.7 0.65 480 350 ND 3.6	Run-off/leaching from natural deposits Run-off/leaching from natural deposits Substances that form ions when in wate Run-off/leaching from natural deposits Naturally occurring organic materials Run-off/leaching from natural deposits Setion others to the salt present in valor. It is naturally occurring.
CERT SEMPCINE IN SCHOOLS IN SCHOOLS RECOMMENT STANDARDS Aesthe REGISLATED CONTEMPRANTS WITH SECONDARY HOLE Threshold Odor Number (TON) at 60°C Chloride (ppm) Specific Conductance (unthas/cm) Total Dissolved Solids (ppm) Color (units) Manganese (pph) ABOTHERIL CONSTITUENTS Sedium (ppm) Total Hardness CaCO, (ppm) Total Alkalinity CaCO, (ppm)	# of siles exceed file Standards Establish There are no adv NS NS NS NS NS NS NS NS NS N	fing action feel hed by the State recise health e 1 0.5	rol=0 # of samp Water Resources Con Elects from exceed 3 500 500 1600 1000 15 50 NS NS	Trel Board's Division Ing the seconda ND 4.7-5.6 12-14 210-250 140-160 ND 7.8-9.3 106-123	### ### ##############################	ndards. ND 17.6-23.8 ND-1.3 440-520 340-360 ND 1.3-16.8 51.1-53.5 140-143	ND 20.7 0.65 480 350 ND 3.6 52.3 141.5	Run-off/leathing from natural deposits Run-off/leathing from natural deposits Substances that form ions when in water Run-off/leathing from natural deposits Naturally occurring organic materials Run-off/leathing from natural deposits Selium networks to the safe present in natural It is naturally societing. Erosion of natural deposits
CONTRACTOR (CONTRACTOR CONTRACTOR	# of sites exceed fits Standards Establish There are no adv NS NS NS NS NS NS NS NS NS N	fing action feel hed by the State recise health e 1 0.5	rol=0 # of samp Water Resources Con Elects from exceed 3 500 500 1600 1000 15 50 NS NS	Trel Board's Division Ing the seconda ND 4.7-5.6 12-14 210-250 140-160 ND 7.8-9.3 106-123 100-120	### ### ##############################	MD 17.6-23.8 NO-1.3 440-520 340-360 NO 1.3-16.8 51.1-53.5 140-143 220-230	ND 20.7 0.65 480 350 ND 3.6 52.3 141.5 225	Run-eff/leaching from natural deposits Run-eff/leaching from natural deposits Substances that form ions when in wate Run-eff/leaching from natural deposits Naturally occurring organic materials Run-eff/leaching from natural deposits Tonium noters to the sait present invatic. It is naturally ecouring. Erosion of natural deposits Erosion of natural deposits Erosion of natural deposits Erosion of natural deposits
LEAD (Jph) CLEAR SEMPLAND RECOMBARY STANDARDS Aesther REGULATED CONTAMINANTS RECOMBARY STANDARDS Aesther REGULATED CONTAMINANTS Threshold Odor Number (TON) at 60°C Chloride (ppm) Specific Conductance (urnhas/cm) Total Dissolved Solids (ppm) Color (units) Manganese (ppb) ANOMINHAL CONSTITUENTS Sedium (ppm) Total Hardness CaCO, (ppm) Total Radon 222 (pCI/L) ² Temperature "C ("F)	# of sites exceed file Standards Establish There are no adv NS NS NS NS NS NS NS NS NS N	fing action for head by the State head by the State of 1 0.5	rol=0 # of samp Water Resources Con flects from exceed 3 500 500 1600 1000 15 50 NS NS NS	Ites collected=3 Itel Board's Division Ing the seconda ND 4.7-5.6 12-14 210-250 140-160 ND 7.8-9.3 106-123 100-120 21-23	33	MD 17.6-23.8 ND-1.3 440-520 340-360 ND 1.3-16.8 51.1-53.5 140-143 220-230 26.9-28.2	ND 20.7 0.65 480 350 ND 3.6 52.3 141.5 225 27.5	It is extensly ecouring. Erosion of natural deposits Erosion of natural deposits
CERT SEMPCINE IN SCHOOLS IN SCHOOLS RECOMMENT STANDARDS Aesthe REGINATED CONTEMPARATS WITH SECONDARY HOLE Threshold Odor Number (TON) at 60°C Chloride (ppm) Specific Conductance (unthas/cm) Total Dissolved Solids (ppm) Color (units) Manganese (pph) AROTHHUL CONSTITUENTS Sedium (ppm) Total Hardness CaCO, (ppm) Total Alkalinity CaCO, (ppm) Total Radon 222 (pCi/L) ²	# of sites exceed file Standards Establish There are no adv NS NS NS NS NS NS NS NS NS N	fing action for heal by the State health e 1 0.5 20	rol=0 # of samp Water Resources Con Effects from exceed 3 500 500 1600 1000 15 50 NS NS NS NS NS	Trel Board's Division ND 4.7-5.6 12-14 210-250 140-160 ND 7.8-9.3 106-123 100-120 21-23 60.1-147 NA	### ### ### ### ######################	MD 17.6-23.8 ND-1.3 440-520 340-360 ND 1.3-16.8 51.1-53.5 140-143 220-230 26.9-28.2 445-455 9(48)-28(82)	ND 20.7 0.65 480 350 ND 3.6 52.3 141.5 225 27.5 450 18(64)	Run-off/leaching from natural deposits Run-off/leaching from natural deposits Substances that form ions when in water Run-off/leaching from natural deposits Naturally occurring organic materials Run-off/leaching from natural deposits Educe orders to the subpresset in water. It is extendly societies Erosion of natural deposits Erosion of natural deposits Erosion of natural deposits Found in the soil throughout the U.S. Water temp, in Distribution System or and if regulation is required.
CONTROL OF THE PROPERTY OF THE	# of sites exceeded There are no adv NS NS NS NS NS NS NS NS NS N	fing action lending action lending health green health g	rol=0 # of samp Water Resources Con Effects from exceed 3 500 500 1600 1000 15 50 NS NS NS NS NS	Trel Board's Division ND 4.7-5.6 12-14 210-250 140-160 ND 7.8-9.3 106-123 100-120 21-23 60.1-147 NA	### ### ### ### ######################	ndards. ND 17.6-23.8 ND-1.3 440-520 340-360 ND 1.3-16.8 51.1-53.5 140-143 220-230 26.9-28.2 445-455 9(48)-28(82) eleraniae where co	ND 20.7 0.65 480 350 ND 3.6 52.3 141.5 225 27.5 450 18(64) standards occur	Run-off/leaching from natural deposits Run-off/leaching from natural deposits Substances that form ions when in water Run-off/leaching from natural deposits Naturally occurring organic materials Run-off/leaching from natural deposits Entite naturaly society in water It is naturally societies Erosion of natural deposits Erosion of natural deposits Erosion of natural deposits Found in the soil throughout the U.S. Water temp, in Distribution System or and if regulation is required. By-product of drinking water chlorination
CEONDARY STANDARDS Aesthe RECONDARY STANDARDS Aesthe RECONDARY STANDARDS Aesthe RECONDARY STANDARDS AESTHER CONTENNAMENTS WITH SECONDARY HOLE THE CONTENNAMENT CONTENNAMENT Specific Conductance (unrhas/cm) Fotal Dissolved Solids (ppm) Color (units) Wanganese (ppb) NOOTHURK CONSTITUENTS Sedium (ppm) Fotal Hardness GaCO, (ppm) Fotal Radon 222 (pCi/L) ² Formgerature "C ("F) IMPERIUMENTS SISTEMESS GICKERO)	# of sites exceed file Standards Establish There are no adv NS NS NS NS NS NS NS NS NS N	fing action for heal by the State health e 1 0.5 20	rol=0 # of samp Water Resources Con Effects from exceed 3 500 500 1600 1000 15 50 NS NS NS NS NS	Trel Board's Division ND 4.7-5.6 12-14 210-250 140-160 ND 7.8-9.3 106-123 100-120 21-23 60.1-147 NA	### ### ### ### ######################	MD 17.6-23.8 ND-1.3 440-520 340-360 ND 1.3-16.8 51.1-53.5 140-143 220-230 26.9-28.2 445-455 9(48)-28(82)	ND 20.7 0.65 480 350 ND 3.6 52.3 141.5 225 27.5 450 18(64)	Run-eff/leaching from natural deposits Run-eff/leaching from natural deposits Substances that form ions when in wate Run-eff/leaching from natural deposits Naturally occurring organic materials Run-eff/leaching from natural deposits Run-eff/leaching from natural deposits to saturally occurring. Erosion of natural deposits Erosion of natural deposits Erosion of natural deposits Found in the soil throughout the U.S. Water temp, in Distribution System or and if regulation is required.

Questions?

