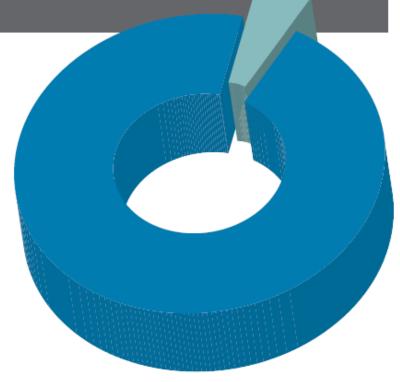
Drinking Water Quality Report 2016 Update

July 20, 2017 – BPU Staff Briefing Peter Fulkerson, Water Quality Supervisor



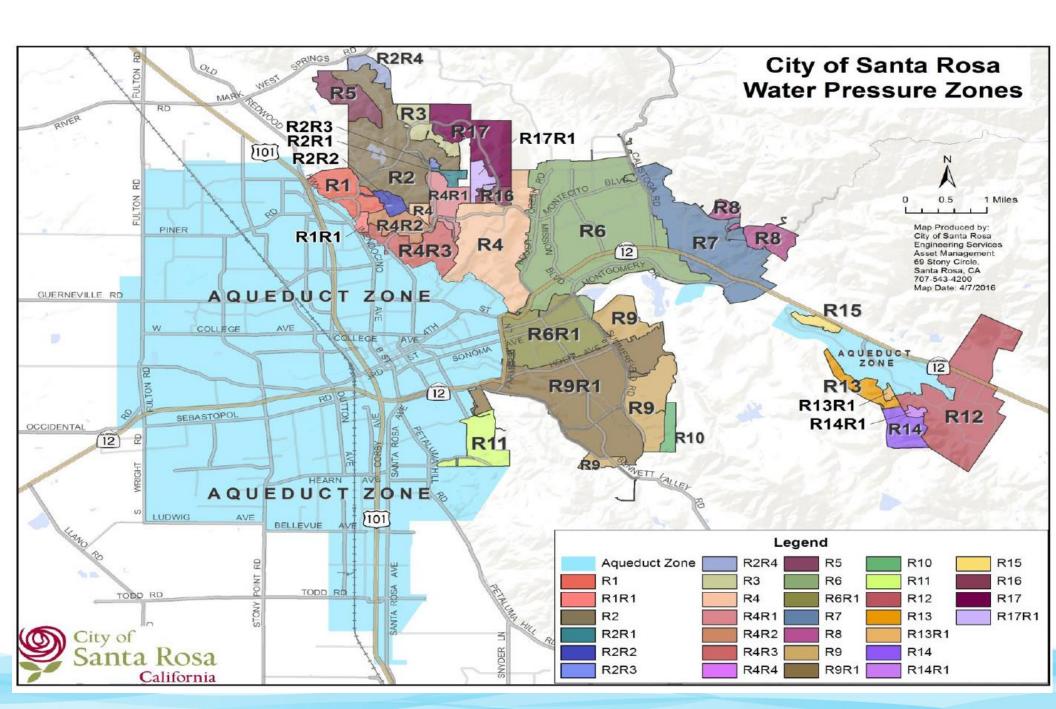
Water Supply Portfolio

As a Santa Rosa Water customer you are connected to Santa Rosa's public water system. The water supplied to homes and businesses is a combination of surface water from the Russian River and local groundwater.

95% Water Agency (Russian river)

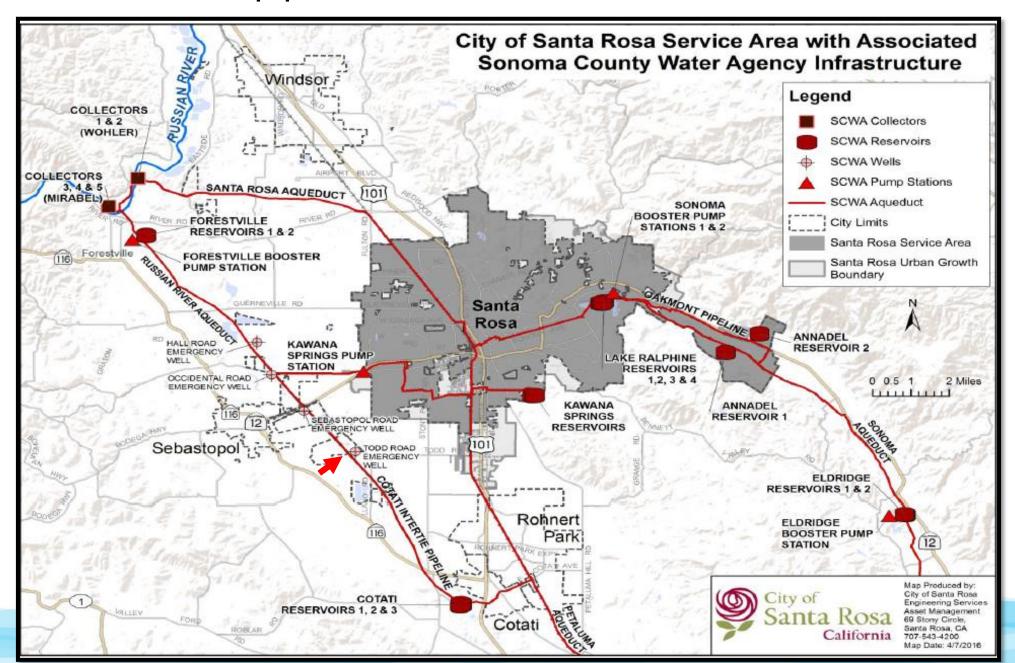
5% Groundwater

Compliance with the Safe Drinking Water Act (SDWA)


Federal Rules – Public drinking water quality:

- Total Coliform Rule
- Disinfectants/Disinfection By-Products Rule
- Lead and Copper Rule
- Groundwater Rule

State Regulations - Cross Connection Control



Large Complex Water System

SCWA Transmission Lines

• 90 miles of pipelines from 12 to 54 inches

Field Sampling covers all areas of water system

Farmers Lane Well -Water **Treatment Plant** Samples

Water Quality Sampling

Caisson 1 Caisson 2 Caisson 3 Caisson 4 Caisson 5 Caisson 6

Sonoma County Water Agency - Caissons 1 thru 6 - 2016 Water Quality Report

CLARITY OF WATER FROM	1	l	Sample		l	l	l	l	l	
GROUNDWATER SOURCES	MCL	Units	Fre	equency	average	average	average	average	average	average
	- (2)	l			0.038	0.037	0.047	0.043	0.043	0.035
Turbidity (1)	5 (3)	NTU	cor	ntinuous	range (0.02 - 2.0)	range (0.02 - 2.0)	range (0.02 - 2.0)	range (0.02 - 2.0)	range (0.01 - 2.0)	range (0.02 - 0.76)
					(0.02 - 2.0)	(0.02 - 2.0)	(0.02 - 2.0)	(0.02 - 2.0)	(0.01 - 2.0)	(0.02 - 0.76)
		MCL			Inits	# Samples	ribution System		r 2016	
MICROBIOLOGICAL - Coliform Bacteria	< 2 posi	itive samples per	month	coliforn	ms/100ml	520		[0] positiv	e samples	
DISINFECTANT - Total Chlorine Residual	3	> 95% per month		detectal	le residual	615	Detect	table residual in	100% of sample	es taken
Total Trihalomethanes (2) - Tank Samples		0.080		п	ng/L	72	average = 0.0	163 mg/L rang	je = (0.0095 mg/	L - 0.0275 mg/L)
VOLATILE ORGANIC COMPOUNDS	Units	STATE	DLR	PHG	Caisson 1	Caisson 2	Caisson 3	Caisson 4	Caisson 5	Caisson 6
Section 64444 - Table A	Offics	MCL	DLIK	{MCLG}	31-Aug-16	31-Aug-16	30-Aug-16	30-Aug-16	30-Aug-16	31-Aug-16
Benzene	mg/L	0.001	0.0005	0.00015	ND ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	mg/L	0.0005	0.0005	0.00013	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene (o-DCB)	mg/L	0.6	0.0005	0.6	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene (p-DCB)	mg/L	0.005	0.0005	0.006	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane (1,1-DCA)	mg/L	0.005	0.0005	0.003	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane (1,2-DCA)	mg/L	0.0005	0.0005	0.0004	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene (1,1-DCE)	mg/L	0.006	0.0005	0.01	ND	ND	ND	ND	ND	ND
cis-1,2-Dichlorethylene (c-1,2-DCE)	mg/L	0.006	0.0005	0.1	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene (t-1,2-DCE)	mg/L	0.01	0.0005	0.06	ND	ND	ND	ND	ND	ND
Dichloromethane (Methylene Chloride)	mg/L	0.005	0.0005	0.004	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	mg/L	0.005	0.0005	0.0005	ND	ND	ND	ND	ND	ND
1,3-Dichloropropene	mg/L	0.0005	0.0005	0.0002	ND	ND	ND	ND	ND	ND
Ethylbenzene	mg/L	0.3	0.0005	0.3	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE) (4)	mg/L	0.0	0.003	0.013	ND	ND	ND	ND	ND	ND
Monochlorobenzene (Chlorobenzene)	mg/L	0.07	0.0005	0.07	ND	ND	ND	ND	ND	ND
Styrene	mg/L	0.1	0.0005	0.0005	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	mg/L	0.001	0.0005	0.0001	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	mg/L	0.005	0.0005	0.00006	ND	ND	ND	ND	ND	ND
Toluene	mg/L	0.15	0.0005	0.15	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	mg/L	0.005	0.0005	0.005	ND	ND	ND	ND	ND	ND

1.0

0.0003

0.0017

ND

0.2

0.005

0.005

0.15

0.0005

0.0005

0.0005

0.0005

0.005

0.0005

1.1.1-Trichloroethane (1.1.1-TCA)

1,1,2-Trichloroethane (1,1,2-TCA)

Trichlorofluoromethane (Freon 11)

1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)

Trichloroethylene (TCE)

/inyl Chloride (VC)

Xylenes (m,p, & o)

ma/l

mg/L

mg/L

mg/L

mg/L

mg/L

⁽¹⁾ Turbidity: Annual average is the mean of the monthly average values, weighted by hours of pump operation each month.

Range refers to the minimum and maximum Turbidity readings recorded by the online Turbidimeters at each site.

⁽²⁾ Total Trihalomethanes: 40 CFR Section 141.12 - Is the sum of the concentrations of Bromodichloromethane, Dibromochloromethane, Bromoform, and Chloroform.

⁽³⁾ MCL: Secondary Standard.

⁽⁴⁾ Methyl tert-butyl ether (MTBE) is listed in both the Primary (Organic Chemicals - VOCs) and Secondary standards.

Water Quality Sampling

Sonoma County Water Agency - Caissons 1 thru 6 - 2016 Water Quality Report

INORGANIC CHEMICALS	Units	STATE	DLR	PHG	Caisson 1	Caisson 2	Caisson 3	Caisson 4	Caisson 5	Caisson 6
Section 64431 - Table A		MCL		{ MCLG }	31-Aug-16	31-Aug-16	30-Aug-16	30-Aug-16	30-Aug-16	31-Aug-16
Aluminum ⁽⁶⁾	μg/L	1000	50	600	< 50	< 50	< 50	< 50	< 50	< 50
Antimony	μg/L	6	6	1	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0
Arsenic	μg/L	10	2	0.004	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Asbestos	MFL	7	0.2	7	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Barium	μg/L	1000	100	2000	< 100	< 100	< 100	< 100	< 100	< 100
Beryllium	μg/L	4	1	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cadmium	μg/L	5	1	0.04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chromium	μg/L	50	10	{ 100 }	< 10	< 10	< 10	< 10	< 10	< 10
Chromium, Hexavalent (CrVI)	μg/L	10	1.0	0.02	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide	mg/L	0.15	0.1	0.15	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< <u>0.0030</u>	< 0.0030
Fluoride (F) Natural-Source	mg/L	2.0	0.1	1	0.11	0.11	0.10	0.11	0.11	0.10
Mercury	μg/L	2	1	1.2	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Nickel	μg/L	100	10	12	< 10	< 10	< 10	< 10	< 10	< 10
Nitrate (as N)	mg/L	10	0.40	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
Nitrate + Nitrite (as N)	mg/L	10		10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
Nitrite (as N)	mg/L	1	0.40	1	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Perchlorate	μg/L	6	4	1	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Selenium	μg/L	50	5	30	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Thallium	μg/L	2	1	0.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

RADIONUCLIDE - Section 64442	Units	STATE	DLR	PHG	Next Complete Sampling Due 2023					
Gross Alpha (4 quarterly samples every 9 years)		MCL		{ MCLG }	Caisson 1	Caisson 2	Caisson 3	Caisson 4	Caisson 5	Caisson 6
11-Mar-14	pCi/L	15	3	{0}	0.907 ± 1.10	0.455 ± 0.893	0.588 ± 0.977	0.936 ± 1.14	0.121 ± 0.777	0.000 ± 0.763
24-Jun-14	pCi/L	15	3	{0}	0.113 ± 0.729	0.377 ± 0.854	0.047 ± 0.772	0.000 ± 0.694	0.000 ± 0.705	0.396 ± 0.944
19-Aug-14	pCi/L	15	3	{0}	0.045 ± 0.740		0.000 ± 0.650		0.000 ± 0.728	
20-Aug-14	pCi/L	15	3	{0}		0.277 ± 0.803		0.366 ± 0.829		1.36 ± 1.20
18-Nov-14	pCi/L	15	3	{0}		0.000 ± 0.671	0.000 ± 0.749	0.380 ± 0.906	0.266 ± 0.769	0.337 ± 0.933
19-Nov-14	pCi/L	15	3	{0}	0.019 ± 0.724					

⁽⁶⁾ Aluminum is listed in both the Primary (Inorganic Chemicals) and Secondary standards.

Water Quality Sampling

Sonoma County Water Agency - Production Wells 1, 4, 6, 7, Occidental, Todd and Sebastopol Production Wells - 2016 Water Quality Report

INORGANIC CHEMICALS	Units	STATE	DLR	PHG	Production 1	Production 4	Production 6	Production 7	Todd #1	Sebastopol #2	Occidental #2
Section 64431 - Table A		MCL		{ MCLG }	30-Aug-16	30-Aug-16	30-Aug-16	30-Aug-16	31-Aug-16	31-Aug-16	12-Oct-16
Aluminum (3)	μg/L	1000	50	600	140	< 50	< 50	< 50	< 50	< 50	< 50
Antimony	μg/L	6	6	1	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0
Arsenic	μg/L	10	2	0.004	< 2.0	< 2.0	< 2.0	< 2.0	2.2	< 2.0	< 2.0
Asbestos	MFL	7	0.2	7	< 0.2	< 0.2	0.2	< 0.2	< 0.2	< 0.2	< 0.2
Barium	μg/L	1000	100	2000	< 100	< 100	< 100	< 100	< 100	< 100	< 100
Beryllium	μg/L	4	1	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cadmium	μg/L	5	1	0.04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chromium	μg/L	50	10	{ 100 }	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Chromium, Hexavalent (CrVI)	μg/L	10	1	0.02	0.56	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide	mg/L	0.15	0.1	0.15	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030
Fluoride (F) Natural-Source	mg/L	2.0	0.1	1	< 0.10	0.10	0.10	< 0.10	0.11	0.11	0.17
Mercury	μg/L	2	1	1.2	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Nickel	μg/L	100	10	12	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Nitrate (as N)	mg/L	10	0.4	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	<0.40
Nitrate + Nitrite (as N)	mg/L	10		10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
Nitrite (as N)	mg/L	1	0.4	1	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Perchlorate	μg/L	6	4	1	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Selenium	μg/L	50	5	30	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Thallium	μg/L	2	1	0.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

2016 Water Quality Sampling Results

OUR FUTURE IN EVERY DROP

TABLE OF DETECTED CHEMICALS OR <u>consti</u>tuents in <u>201</u>6

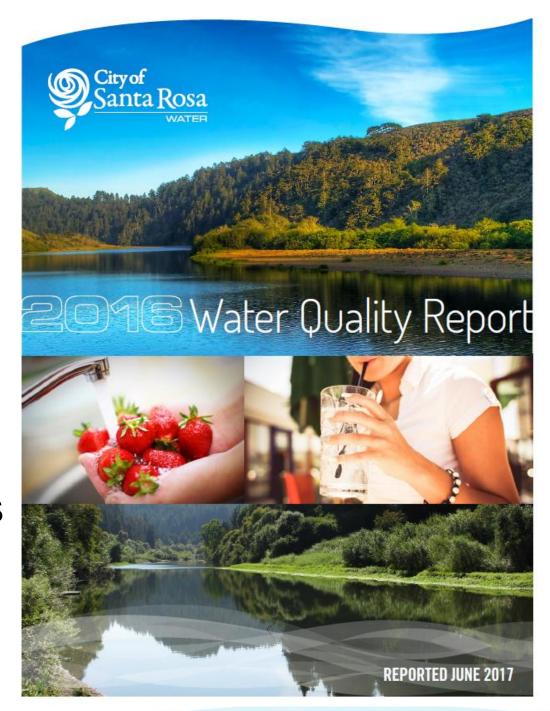
				WAIER	AGENCY	SANIA	KU5A ²	
Substance (Parameter)	Public Health Goal {MCLG}	DLR	Maximum Contaminant Level	Range Detected	Reporting Value	Range Detected	Reporting Value	Major Source In Drinking Water
PRIMARY STANDARDS Regulated	Contaminants with Pri	imary MCLs or	MRDLs					
INORGANIC CONTAMINANTS								
Arsenic (ppb) ² Fluoride (ppm) ⁴	0.004	2.0 0.1	10 4.0	ND-2.2 0.10-0.17	ND 0.11	ND 0.19-0.22	ND 0.2	Erosion of natural deposits
DISTRIBUTION SYSTEM DETEC		0.1	4.0	0.10-0.17	0.11	0.13-0.22	0.2	Erosion of natural deposits
	110N3 2016							
MICROBIOLOGICAL CONTAMINANTS								
Total Coliform Bacteria from Santa Rosa Distribution System	0		5% of monthly samples	NA	NA	0%-1.4%	0%	Naturally present in the environment
Total Trihalomethanes (ppb)	NS		80	NA	NA	20.6-30.8	26.3	By-product of drinking water chlorination
Haloacetic Acids (ppb)	NS		60	NA	NA	2.3-8.7	4.7	By-product of drinking water chlorination
Disinfectant-Free Chlorine (Cl ₂) Residual (ppm)	MRDLG as Cl ₂ 4.0		MRDLG as Cl ₂ 4.0	NA	NA	0.04-1.75	0.71	Disinfectant to control microbes
pH (units) prior to pH adjustment	NS		NS	NA	NA	6.6-8.8	8.1	Sodium Hydroxide addition
LEAD/COPPER RULE 2016 DATA	Monitored at cus	tomer's tap	in Santa Rosa. Num	ber of sites excee	eded Action Level	= 0 Number of sa	mples coll ected	= 50
Copper (ppm)	0.3	0.05	1.3 (AL)	ND	ND	ND-0.114	0.0679*	Internal corrosion of household
Lead (ppb)	0.2	5	15 (AL)	ND	ND	ND	ND	plumbing; erosion of natural deposits
SECONDARY STANDARDS Assthe	tic Standards Establish	ned by the Stat	e Water Resources Con	trol Board's Division	of Drinking Water			
REGULATED CONTAMINANTS WITH SECONDARY MCLs	There are no adv	erse health	effects from exceed	ling the secondar	y (aesthetic) star	ndards.		
Threshold Odor Number (TON) at 60°C	NS	1	3	ND	ND	ND	ND	Naturally-occurring organic materials
Chloride (ppm)	NS		500	5.0-23	9.1	17.9-24.3	21.1	Run-oft/leaching from natural deposits
Sulfate (ppm)	NS	0.5	500	2.2-14	9.8	1.2-1.4	1.3	Run-oft/leaching from natural deposits
Specific Conductance (umhas/cm)	NS		1600	230-270	247	470-510	490	Substances from ions when in water
Total Dissolved Solids (ppm)	NS		1000	71-260	169	340-370	355	Run-off/leaching from natural deposits
Color (units)	NS		15	ND	ND	ND	ND	Naturally-occurring organic materials
Manganese (ppb)	NS	20	50	ND-72	ND	ND	ND	Run-off/leaching from natural deposits
ADDITIONAL CONSTITUENTS								
Sodium (ppm)	NS		NS	7.9-40	17.2	52-56.4	54.2	Sodium refers to the salt present in water. It is naturally occurring.
Total Hardness CaCO ₃ (ppm)	NS		NS	40-112	101	141-150	145.5	Erosion of natural deposits
Total Alkalinity CaCO ₃ (ppm)	NS		NS	95-110	100.2	230-240	235	Erosion of natural deposits
Calcium (ppm)	NS		NS	12-22	17.7	27.7-29.5	28.6	Erosion of natural deposits
Total Radon 222 (pCi/L) ⁵	NS	100	NS	171-382	225.2	445-455	450	Found in the soil throughout the U.S.
Temperature °C (°F)	NS		NS	NA	NA	11(51)-28(83)	19(66)	Temperature of water in Distribution System

WATER AGENCY! SANTA ROSA²

Santa Resa's drinking water meets or exceeds all State and Federal drinking water health standards. Your water is tested weekly and the water system is carefully managed to be dependable and safe.

* 90th percentile detected

Note: Listed in the table above are substances detected in the City's drinking water. A full listing of sample results is on our website.


- I The Water Agency has 9 different groundwater sources that can be blended together. The range detected and the reporting value are the high, low, average and weighted average of the 9 sources.
- 2 Santa Rosa water data includes sampling taken in the distribution system and from source water
- wells. Our two drinking water wells are sampled separately. The Manganese reporting value is after
- 3 Arsenic was detected in a single well that provides an insignificant flow to the Water Agency system (less than 0.03%). Also, the Santa Rosa taps are prior to the well's injection site and, most likely, did not receive any of the water from this well. The other 99.97% of water deliveries had no detections of arsenic.
- 4 Fluoridation to fight tooth decay has not been implemented in Santa Rosa. The optimal dose of fluoride in water to fight tooth decay is 0.7 ppm.
- 5 Radon is a radioactive gas that can get into indoor air when released from tap water from showering or running a faucet. Radon entering the home through tap water is a very small source of radon in indoor air. EPA is proposing to require community water suppliers to provide water with radon levels no hisher than 4,000 pCS/L, which

contributes about 0.4 pCi/L of radon to the air in your home. More information is available at EPA website: epa_gov/radon/rmwater.html. The State allows us to monitor for some contaminants less than once per year. Our radon data for Santa Rosa's source, though representative, was sampled in 2009.

Annual Water Quality Report provides:

- Water system information
- Sources of water
- Definitions
- How to Read Section
- Water Quality Results
- Exceedances

Questions?

