Dakmont Senior Living—Emerald Isle Assisted Living Facility Project
nitial Study/Mitigated Negative Declaration

Attachment 11a

Appendix G: Focused Traffic Study

May 10, 2017

Mr. Andrew Hill First Carbon Solutions 1350 Treat Boulevard, Suite 380 Walnut Creek, CA 94597

Focused Traffic Study for the Emerald Isle Assisted Living Project

Dear Mr. Hill;

As requested, W-Trans has prepared a focused traffic analysis for the proposed Emerald Isle Assisted Living project to be located near Thomas Lake Harris Drive in the City of Santa Rosa. The traffic study was completed in accordance with the criteria established by the City of Santa Rosa, is consistent with standard traffic engineering techniques, and reflects a scope of work reviewed and approved by City staff.

Project Description

The proposed project is an assisted living and memory care facility with 71 beds in 49 units, to be constructed on a currently vacant 12.17-acre site surrounded by the Fountaingrove Golf Course. With respect to streets, the site is generally bounded by Thomas Lake Harris Drive on the west, east, and north. Fountaingrove Lake is located to the south. The project includes construction of a 68,144 square foot building with 76 parking spaces which would be accessed via an eastward extension of a private street called Gullane Drive. A new sidewalk would be included along the extended roadway, connecting to an existing sidewalk at the current terminus of Gullane Drive. A copy of the project site plan on which the analysis was based is enclosed on Figure 1.

Study Area and Periods

The study area includes Thomas Lake Harris Drive near the project site, as well an evaluation of the following intersections:

- 1. Thomas Lake Harris Drive/Gullane Drive
- 2. Fountaingrove Parkway/Thomas Lake Harris Drive (West)

Operating conditions during the a.m. and p.m. peak periods were evaluated to capture the highest potential impacts for the proposed project as well as the highest volumes on the local transportation network. The morning peak period is from 7:00 to 9:00 a.m. and reflects conditions during the home to work or school commute, while the p.m. peak period occurs between 4:00 and 6:00 p.m. and typically reflects the highest level of congestion during the homeward bound commute.

Circulation Setting

Vehicular Circulation

Thomas Lake Harris Drive is an approximately 1.75-mile long collector street that forms a loop beginning and ending on Fountaingrove Parkway. The street passes through single- and multi-family residential neighborhoods and has a posted speed limit of 25 mph, conforming to the hillside topography with a series of horizontal and vertical curves. Thomas Lake Harris Drive is generally 40 feet wide with on-street parking and turn pockets at intersections, together with sidewalks and/or parallel multi-use paths on both sides of the street.

Fountaingrove Parkway/Thomas Lake Harris Drive (West) is a signalized tee-intersection with protected left-turn phasing on all approaches and a right-turn overlap on the Thomas Lake Harris Drive approach. Marked crosswalks are provided across the south and west legs.

Thomas Lake Harris Drive/Gullane Drive is an unsignalized tee-intersection with a left turn pocket on the southbound Thomas Lake Harris Drive approach. A sign is posted at the entry to Gullane Drive indicating that it is a private street. The westbound Gullane Drive approach is stop controlled. There are no marked crosswalks at the intersection.

The current intersection lane configurations at the study intersections are shown on the enclosed Figure 2.

Bicycle Circulation

Bicycle facilities in Santa Rosa consist of Class I pathways, Class II bicycle lanes, and Class III bicycle routes along with support facilities such as bicycle parking, multi-modal transit access, and amenities such as showers, changing areas and storage facilities. In the vicinity of the proposed project, there are existing Class I bicycle paths that run parallel to Fountaingrove Parkway.

Pedestrian Circulation

Sidewalks exist along the existing segment of Gullane Drive that would be extended into the project site, as well as along Thomas Lake Harris Drive in the surrounding vicinity. In general, pedestrian facilities are continuous and connective among neighborhoods in the Fountaingrove community.

Transit Operations

Santa Rosa CityBus is the primary transit provider in Santa Rosa. CityBus provides regularly-scheduled fixed-route service to residential neighborhoods, major activity centers, and transit hubs within the City. Seventeen fixed routes are operated with wheelchair accessible, low-floor buses, which can accommodate up to two bikes on racks attached to the front. CityBus routes are designed around a timed-transfer method where buses serving different routes arrive and depart at designated transfer locations at routine periodic intervals.

CityBus Route 1 includes a stop at Fountaingrove Parkway/Thomas Lake Harris Drive, 0.7 miles from the project site, though as of May 21, 2017, the route is being realigned and will no longer service this stop. The closest bus stop to the project site will then be at Round Bard Boulevard/Unocal Place, approximately one mile from the project site.

Paratransit, also known as dial-a-ride or door-to-door service, is available for those who are unable to independently use the transit system due to a physical or mental disability. Individuals must be registered and certified as ADA eligible before using the service. CityBus currently contracts out paratransit service which provides curb-to-curb transportation for disabled riders within city limits. Service hours are Monday through Friday from 6:00 a.m. to 8:00 p.m., Saturday from 7:00 a.m. to 7:45 p.m. and Sunday from 9:00 a.m. to 5:00 p.m. Ride reservations can be scheduled daily.

Collision History

The collision history for the section of Thomas Lake Harris Drive between its western terminus at Fountaingrove Parkway and Skyfarm Drive (0.30 miles east of the project site) was reviewed to determine any trends or patterns that may indicate a safety issue. Collision records were obtained from the California Highway Patrol as published in their Statewide Integrated Traffic Records System (SWITRS) reports. The most current five-year period available is January 1, 2012 through December 31, 2016. During this five-year period, one reported collision occurred along the study segment, but it was not in the vicinity of the Gullane Drive.

There were seven collisions reported directly at the intersection of Thomas Lake Harris Drive/Fountaingrove Parkway, though the collision data lacks sufficient detail to determine whether collisions occurred at the eastern or western ends of Thomas Lake Harris Drive (the street intersects Fountaingrove Parkway at two locations). Conservatively assuming that all seven reported collisions occurred at the western study intersection, the calculated collision rate would be 0.21 collisions per million vehicles entering (c/mve), which is equal to the Statewide Average for similar facilities. It should be noted four of the seven collisions occurred prior to signalization of the intersection in late 2013.

Regulatory Framework

The City of Santa Rosa's adopted Level of Service (LOS) Standard is contained in *Santa Rosa General Plan 2035*. Standard TD-1 states that the City will maintain a Level of Service (LOS) D or better along all major corridors. Although the City's standard does not specify criteria for intersections, for the purposes of this study a minimum operation of LOS D for the overall operation of signalized intersections was applied, since intersections are typically where corridor capacity constraints occur; acceptable intersection operation typically translates to acceptable corridor operation.

Existing Traffic Conditions

Turning movement counts were collected on February 10, 2015 at the Fountaingrove Parkway/Thomas Lake Harris Drive (West) intersection, and on August 25, 2016 at the Thomas Lake Harris Drive/Gullane Drive intersection. All counts were obtained while area schools were in session. Under existing conditions, the study intersections operate acceptably at LOS A during the a.m. and p.m. peak hours. A summary of the level of service calculations is contained in Table 1. Exhibits showing traffic volumes, along with copies of the LOS calculations for all evaluated scenarios, are enclosed on Figure 3.

Ta	Table 1 – Existing Intersection Levels of Service									
Stu	udy Intersection	AM F	Peak	PM Peak						
	Approach	Delay	LOS	Delay	LOS					
1.	Thomas Lake Harris Dr/Gullane Dr	0.5	Α	0.2	Α					
	Westbound (Gullane Dr) Approach	9.1	Α	9.0	Α					
2.	Fountaingrove Pkwy/Thomas Lake Harris Dr (West)	5.9	Α	5.3	Α					

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; results for minor approaches to two-way stop-controlled intersections are indicated in *italics*

Baseline Traffic Conditions

Baseline operating conditions were assessed to reflect the addition of traffic associated with known projects that may be constructed and/or become operational in the study area in the next two to three years. Relevant projects used in the Baseline scenario were selected based on the expected impact to the study area from the City's "Permit Santa Rosa" portal (http://santarosa.civicinsight.com), and confirmed with City Staff in April 2017.

- Canyon Oaks 96 apartment units on Thomas Lake Harris Drive, north of Emerald Isle site
- Chanate Cottages 18 apartment units at 2387 Chanate Road (constructed)
- Fir Ridge Workforce Housing 36 attached residential dwellings at 3700 Fir Ridge Drive
- Fountaingrove Inn Condos 22 attached residential dwellings at 3586 Mendocino Avenue
- Terrazzo at Fountaingrove 19 single-family detached residential dwellings at 1601 Fountaingrove Parkway
- Skyfarm 3 30 single-family detached residential dwellings at 3925 Saint Andrews Drive

- The Arbors 37 single-family detached residential dwellings at 3500 Lake Park Drive
- Hampton Inn 100-room hotel at 3383 Airway Drive

Trip distribution assumptions for the approved projects were based on the project trip distribution, as well as published traffic studies for specific projects, if available.

The anticipated traffic associated with these projects was added to the volumes analyzed in the "Existing Conditions" scenario in order to determine Baseline volumes. Under these conditions, the study intersections are expected to continue operating acceptably at LOS A during the a.m. and p.m. peak hours. The resulting operating conditions are summarized in Table 2.

Tal	Table 2 – Baseline Intersection Levels of Service									
Stu	udy Intersection	AM	Peak	PM Peak						
	Approach	Delay	LOS	Delay	LOS					
1.	Thomas Lake Harris Dr/Gullane Dr	0.3	Α	0.1	Α					
	Westbound (Gullane Dr) Approach	9.6	Α	9.7	Α					
2.	Fountaingrove Pkwy/Thomas Lake Harris Dr (West)	8.0	Α	7.1	Α					

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; results for minor approaches to two-way stop-controlled intersections are indicated in *italics*

Future Traffic Conditions

Future traffic volumes representing year 2040 buildout of the City of Santa Rosa General Plan were obtained from the Sonoma County Transportation Authority's SCTM\10 travel demand model. The model includes link-based volume projections for Fountaingrove Parkway and Thomas Lake Harris Drive. The "Furness" procedure was used to determine future turning movements at the Fountaingrove Parkway/Thomas Lake Harris Drive (West) intersection, while future volumes at the Thomas Lake Harris Drive/Gullane Drive intersection were developed by adding the model's incremental growth on Thomas Lake Harris Drive to the intersection's existing volumes.

Under future conditions, the study intersections are projected to continue operating acceptably at LOS A or B during the a.m. and p.m. peak hours. Future operating conditions are summarized in Table 3.

Ta	Table 3 – Future Intersection Levels of Service									
Stu	udy Intersection	AM I	Peak	PM Peak						
	Approach	Delay	LOS	Delay	LOS					
1.	Thomas Lake Harris Dr/Gullane Dr	0.2	А	0.1	Α					
	Westbound (Gullane Dr) Approach	10.8	В	11.0	В					
2.	Fountaingrove Pkwy/Thomas Lake Harris Dr (West)	13.4	В	12.5	В					

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; results for minor approaches to two-way stop-controlled intersections are indicated in *italics*

Trip Generation

The anticipated trip generation for the proposed project was estimated using standard rates published by the Institute of Transportation Engineers (ITE) in *Trip Generation Manual*, 9th Edition, 2012, for "Assisted Living" (Land Use #254). Trip generation for this land use is based on the number of beds. The proposed assisted living and

memory care facility is expected to generate an average of 189 new trips on a daily basis, including 10 during the a.m. peak hour and 16 during the p.m. peak hour. The applied trip generation rates and estimates are shown in Table 4.

Table 4 – Trip Generation Summary											
Land Use	Units	Da	Daily		AM Peak Hour			PM Peak Hour			
		Rate	Trips	Rate	Trips	In	Out	Rate	Trips	In	Out
Assisted Living (#254)	71 beds	2.66	189	0.14	10	6	4	0.22	16	7	9

Trip Distribution

The pattern used to allocate new project trips to the street network was determined by reviewing existing turning movements at the study intersections, observations of neighborhood travel patterns, and knowledge of traffic patterns in the area and surrounding region. The applied trip distribution percentages are shown in Table 5.

Table 5 – Trip Distribution Assumptions								
Route	Percent							
Cross Creek Road – via Thomas Lake Harris Drive northeast of project site 8%								
Fountaingrove Parkway East – via Thomas Lake Harris Drive south of project site								
Fountaingrove Parkway West - via Thomas Lake Harris Drive south of project site								
TOTAL	100%							

Traffic Operation with the Proposed Project

Existing plus Project Intersection Levels of Service

Completion and occupation of the proposed project would result in a less than significant increase in delay, with all of the study intersections continuing to operate at LOS A during the a.m. and p.m. peak hours. A summary of the level of service calculations is contained in Table 6.

Table 6 – Existing and Existing plus Project Peak Hour Intersection Levels of Service											
Study Intersection	Exis	ting (onditio	ns	Existing plus Project						
Approach		AM Peak		PM Peak		AM Peak		PM Peak			
		Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS		
1. Thomas Lake Harris D	r/Gullane Dr	0.5	Α	0.2	Α	0.8	Α	1.0	Α		
Westbound (Gullane D	r) Approach	9.1	Α	9.0	Α	9.2	Α	9.1	Α		
2. Fountaingrove Pkwy/	Thomas Lake Harris Dr (West)	5.9	Α	5.3	Α	6.1	Α	5.6	Α		

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; results for minor approaches to two-way stop-controlled intersections are indicated in *italics*

Baseline plus Project Intersection Levels of Service

Under Baseline plus Project conditions, the study intersections would also experience a less-than-significant increase in delay, with continued LOS A operation during the a.m. and p.m. peak hours. A summary of the level of service calculations is contained in Table 7.

Tal	Table 7 – Baseline and Baseline plus Project Peak Hour Intersection Levels of Service										
Stu	ldy Intersection	Base	eline (Conditio	ons	Baseline plus Project					
	Approach	AM P	eak	PM Peak		AM Peak		PM Peak			
		Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS		
1.	Thomas Lake Harris Dr/Gullane Dr	0.3	Α	0.1	Α	0.5	Α	0.5	Α		
	Westbound (Gullane Dr) Approach	9.6	Α	9.7	Α	9.8	Α	9.7	Α		
2.	Fountaingrove Pkwy/Thomas Lake Harris Dr (West)	8.0	Α	7.1	Α	8.2	Α	7.4	Α		

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; results for minor approaches to two-way stop-controlled intersections are indicated in *italics*

Future plus Project Intersection Levels of Service

Upon the addition of project-generated traffic to future volumes, the study intersections would continue to operate acceptably at LOS B or better during both peak hours, with less than significant increases in delay. A summary of the future level of service calculations is contained in Table 8.

Tal	Table 8 – Future and Future plus Project Peak Hour Intersection Levels of Service											
Stu	dy Intersection	Fut	ure C	onditio	ns	Future plus Project						
	Approach	AM P	eak	PM P	PM Peak		AM Peak		eak			
		Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS			
1.	Thomas Lake Harris Dr/Gullane Dr	0.2	Α	0.1	Α	0.3	Α	0.3	Α			
	Westbound (Gullane Dr) Approach	10.8	В	11.0	В	11.0	В	11.0	В			
2.	Fountaingrove Pkwy/Thomas Lake Harris Dr (West)	13.4	В	12.5	В	13.6	В	13.2	В			

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; results for minor approaches to two-way stop-controlled intersections are indicated in *italics*

Finding – The study intersections are expected to operate acceptably upon the addition of project trips to Existing, Baseline, and Future scenarios, resulting in a less-than-significant impact on traffic operation.

Multimodal Circulation

While residents and patients of the proposed project may not generate pedestrian, bicycle, or transit trips, employees and visitors may use one or more of these modes on an occasional or routine basis.

Pedestrian Facilities

The project includes construction of a new sidewalk along the Gullane Drive extension to the project site, connecting to existing sidewalks on Gullane Drive and Thomas Lake Harris Drive.

Bicycle Facilities

Bicyclists can access the regional bicycle network via Gullane Drive and Thomas Lake Harris Drive, which connects to the existing Class I bike trail along Fountaingrove Parkway.

Transit Facilities

Upon implementation of CityBus's updated bus network system in May 2017, the nearest bus stop to the project site will be approximately one mile away on Fountaingrove Parkway. Given the distance and hilly terrain in the area, it is unlikely that project employees or visitors will use transit to access the project site. However, should bus service be reestablished on Fountaingrove Parkway including the stop at Thomas Lake Harris Drive, transit will become a viable option for employees and visitors. Continuous pedestrian facilities exist between the project site and this transit stop. Given the nature of the proposed facility, it is anticipated that most transit trips made by residents would be via existing paratransit services offered by CityBus.

Finding – The proposed project will effectively tie into the surrounding multimodal circulation network, making walking and bicycling viable means of travel for the facility's employees and visitors.

Finding – Transit use by project employees and visitors would be viable in the future if CityBus reestablishes service to the bus stop on Fountaingrove Parkway/Thomas Lake Harris; most if not all project residents would qualify for door-to-door paratransit service and be adequately served by CityBus's paratransit operations.

Site Access and Circulation

Access to the site would be provided via an eastward extension of Gullane Drive. Driveways and internal drive aisles use standard configurations and would be navigable by emergency response vehicles. The driveway crosses a narrow portion of the Fountaingrove Golf Course and a paved golf cart/walking path. In tandem with construction of the driveway, the path would be realigned appropriately to cross the road perpendicularly.

Finding – Emergency access and on-site circulation are expected to function acceptably at the project site.

Sight Distance

At unsignalized intersections, a substantially clear line of sight should be maintained between the driver of a vehicle waiting at the crossroad and the driver of an approaching vehicle. Adequate time must be provided for the waiting vehicle to either cross, turn left, or turn right, without requiring the through traffic drivers to radically alter their speed.

Sight distance along Thomas Lake Harris Drive at Gullane Drive was evaluated based on sight distance criteria contained in the Highway Design Manual published by Caltrans. The recommended sight distances for minor street approaches that are either a private roadway or a driveway are based on stopping sight distance.

For the posted 25 mile per hour (mph) speed limit on Thomas Lake Harris Drive, the recommended stopping sight distance is 150 feet. Based on a review of the field conditions, the sight distance at Gullane Drive extends 250 feet to the north, which satisfies requirements for speeds of 35 mph. To the south of Gullane Drive, the available sight distance is approximately 200 feet, which satisfies requirements for speeds up to 30 mph.

Radar speed samples were obtained on the northbound and southbound approaches of Thomas Lake Harris Drive at Gullane Drive. Prevailing speeds were found to exceed the posted 25-mph speed limit in both directions of travel. Based on the speed samples, the average surveyed speed for northbound vehicles was 30 mph, with a peak observed speed of 38 mph. In the southbound direction, the average surveyed speed was also 30 mph, with a peak observed speed of 40 mph.

Sufficient sight distance exists at Gullane Drive for drivers to adequately respond to the observed average speeds on Thomas Lake Harris Drive. Because some drivers have been observed substantially exceeding the posted speed limit on Thomas Lake Harris Drive at speeds in excess of 35 mph near the project site, however, it is recommended that a traffic calming measure be implemented in order to reduce speeds and reduce the potential for sight

distance related safety issues to occur. Currently, Thomas Lake Harris Drive includes a left-turn pocket to the north of Gullane Drive and transitions to a two-lane roadway with no center lane to the south. The effective through traffic lane widths range from 13 to 18 feet. Restriping the street to include a center turn lane would reduce through travel lanes to widths of 10 to 12 feet. The narrowing of travel lanes is a proven traffic calming technique and would be expected to reduce vehicle speeds. Provision of a center turn lane may also improve ease of egress for drivers exiting Gullane Drive. The project applicants should be responsible for designing and implementing this restriping scheme, with design details to be reviewed and approved by the City of Santa Rosa Public Works Department. It should be noted that the City of Santa Rosa has conditioned a similar traffic calming treatment to be implemented on Thomas Lake Harris Drive approximately 0.20 miles north of Gullane Drive as part of the approved Canyon Oaks Apartments project.

Finding – Sight distance from Gullane Drive to the north and south at the Thomas Lake Harris intersection is adequate for observed average speeds. However, some drivers on Thomas Lake Harris Drive are exceeding the posted 25 mph posted speed limit, at speeds requiring a greater sight distance than is available at the Gullane Drive intersection.

Recommendation – In order to reduce speeds on Thomas Lake Harris Drive and ensure provision of adequate sight distance at Gullane Drive, the project applicants should be responsible for restriping Thomas Lake Harris Drive in the vicinity to include a two-way left-turn lane, the design of which shall be specified and approved by the City of Santa Rosa Public Works Department.

Conclusions

- The project is expected to generate an average of 189 new daily vehicle trips, including ten trips during the a.m. peak hour and 16 trips during the p.m. peak hour.
- The study intersections currently operate acceptably during the a.m. and p.m. peak hours and are projected to continue operating acceptably under Baseline and Future conditions.
- Upon the addition of project-generated traffic to Existing, Baseline, and Future traffic volumes, the study intersections would be expected to continue operating acceptably at LOS B or better.
- The addition of sidewalks along the extension of Gullane Drive would effectively link the project site to the surrounding pedestrian network.
- The project would effectively tie into the regional bicycle circulation network.
- Transit use by project employees and visitors would be viable in the future if CityBus reestablishes service to the bus stop on Fountaingrove Parkway/Thomas Lake Harris; most if not all project residents would qualify for door-to-door paratransit service and be adequately served by CityBus's paratransit operations.
- Emergency access and on-site circulation would be expected to function acceptably at the project site.
- Sight distance along Thomas Lake Harris Drive at Gullane Drive is adequate for drivers approaching at the
 posted 25 mph speed limit, as well as speeds up to 35 mph in the southbound direction and 30 mph in the
 northbound direction. However, some drivers on Thomas Lake Harris Drive are substantially exceeding the
 posted speed limit, resulting in the need for greater sight distance than exists at the Gullane Drive
 intersection.

Recommendation

• In order to reduce speeds on Thomas Lake Harris Drive and ensure provision of adequate sight distance at Gullane Drive, the project applicants should be responsible for restriping Thomas Lake Harris Drive in the vicinity to include a two-way left-turn lane, the design of which shall be specified and approved by the City of Santa Rosa Public Works Department.

Thank you for giving W-Trans the opportunity to provide these services. Please call if you have any questions.

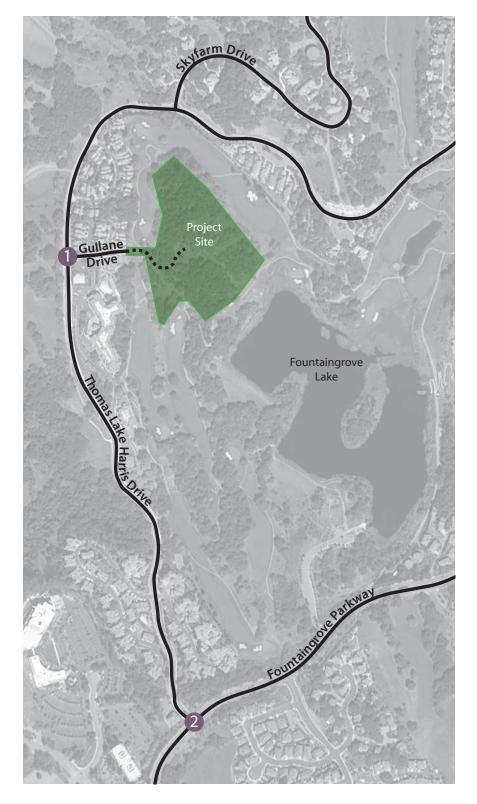
Sincerely,

Lauren Davini, EIT Assistant Engineer

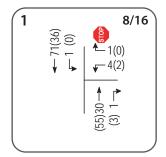
Zachary Matley, AICP Associate Principal

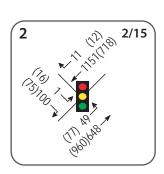
CN/jzm/SRO399.L1

Enclosures: Figure 1 – Site Plan

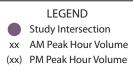

Figure 2 – Existing Volumes and Lane Configurations Figure 3 – Baseline, Future, and Project Volumes

Level of Service Calculations

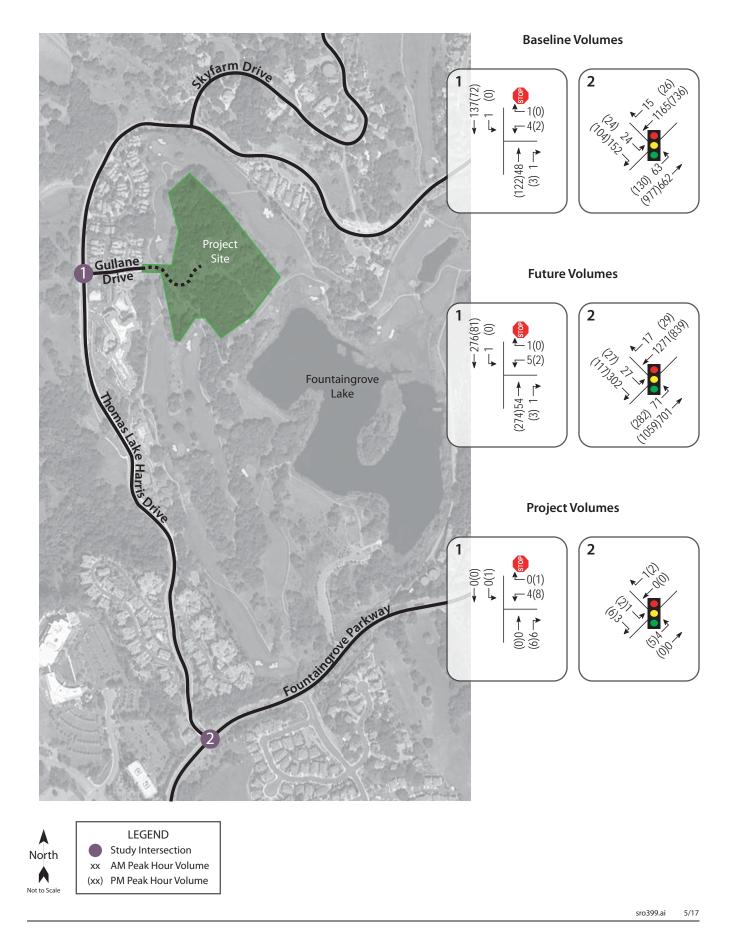



Source: Brelje & Race 4/17 sro399.ai 5/17

Existing Volumes



Existing Lane Configurations



sro399.ai

(W-Trans

Intersection						
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W/	WDIC	1	NDIX	352	<u>551</u>
Traffic Vol, veh/h	4	1	30	1	1	71
Future Vol, veh/h	4	1	30	1	1	71
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	None
Storage Length	0	-	-	-	50	-
Veh in Median Storage, #	ŧ 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	79	79	79	79	79	79
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	5	1	38	1	1	90

Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	131	39	0	0	39	0	
Stage 1	39	-		-	-	-	
Stage 2	92	-	-	-	-	-	
Critical Hdwy	6.42	6.22			4.12		
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	-	-	2.218	-	
Pot Cap-1 Maneuver	863	1033			1571		
Stage 1	983	-	-	-	-	-	
Stage 2	932						
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	862	1033		-	1571	-	
Mov Cap-2 Maneuver	862	-	-	-	-	-	
Stage 1	983						
Stage 2	931	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	9.1		0		0.1		
HCM LOS	Α						

Minor Lane/Major Mvmt	NBT	NBRW	BLn1	SBL	SBT	
Capacity (veh/h)	-		892	1571	-	
HCM Lane V/C Ratio	-	-	0.007	0.001	-	
HCM Control Delay (s)	-	-	9.1	7.3	-	
HCM Lane LOS	-	-	Α	Α	-	
HCM 95th %tile Q(veh)	-	-	0	0	-	

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	S
Lane Configurations	¥		1≽		7	
Traffic Vol, veh/h	2	0	55	3	0	36
Future Vol, veh/h	2	0	55	3	0	36
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	50	-
Veh in Median Storage, #	. 0	-	0	-		0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	2	0	62	3	0	40

Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	103	63	0	0	65	0	
Stage 1	63	-		-	-	-	
Stage 2	40	-	-	-	-	-	
Critical Hdwy	6.42	6.22		-	4.12	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	-	-	2.218	-	
Pot Cap-1 Maneuver	895	1002		-	1537	-	
Stage 1	960	-	-	-	-	-	
Stage 2	982	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	895	1002	-	-	1537	-	
Mov Cap-2 Maneuver	895	-	-	-	-	-	
Stage 1	960	-		-	-	-	
Stage 2	982	-	-	-	-	-	
ŭ							
Approach	WB		NB		SB		
HCM Control Delay, s	9		0		0		
HCM LOS	Α						

Minor Lane/Major Mvmt	NBT	NBR\	WBLn1	SBL	SBT
Capacity (veh/h)	-	-	895	1537	-
HCM Lane V/C Ratio		-	0.003	-	-
HCM Control Delay (s)		-	9	0	
HCM Lane LOS		-	Α	Α	-
HCM 95th %tile Q(veh)		-	0	0	-

AM Peak Hour - Existing Conditions Emerald Isle Traffic Impact Study

W-Trans Page 1 PM Peak Hour - Existing Conditions Emerald Isle Traffic Impact Study

/ → ← **/** ↓ √

	۶	-	-	•	1	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	*	^	† p	WEIT	*	7	
Traffic Volume (veh/h)	49	648	1151	11	10	100	
Future Volume (veh/h)	49	648	1151	11	10	100	
Number	5	2	6	16	7	14	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			0.97	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1863	1863	
Adj Flow Rate, veh/h	52	689	1224	12	11	106	
Adj No. of Lanes	1	2	2	0	1	1	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	82	2825	2514	25	149	206	
Arrive On Green	0.05	0.80	0.70	0.70	0.08	0.08	
Sat Flow, veh/h	1774	3632	3683	35	1774	1583	
Grp Volume(v), veh/h	52	689	603	633	11	106	
Grp Sat Flow(s), veh/h/ln	1774	1770	1770	1855	1774	1583	
Q Serve(q s), s	2.0	3.3	10.5	10.5	0.4	4.2	
Cycle Q Clear(q c), s	2.0	3.3	10.5	10.5	0.4	4.2	
Prop In Lane	1.00			0.02	1.00	1.00	
Lane Grp Cap(c), veh/h	82	2825	1240	1300	149	206	
V/C Ratio(X)	0.64	0.24	0.49	0.49	0.07	0.51	
Avail Cap(c_a), veh/h	379	3280	1240	1300	761	752	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	31.8	1.7	4.6	4.6	28.6	27.5	
Incr Delay (d2), s/veh	3.0	0.0	0.3	0.3	0.1	0.7	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.0	1.5	5.1	5.4	0.2	3.8	
LnGrp Delay(d),s/veh	34.9	1.8	4.9	4.9	28.7	28.3	
LnGrp LOS	С	Α	Α	Α	С	С	
Approach Vol, veh/h		741	1236		117		
Approach Delay, s/veh		4.1	4.9		28.3		
Approach LOS		Α	Α		С		
Timer	1	2	3	4	5	6	7
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc), s		58.7		9.2	6.6	52.0	
Change Period (Y+Rc), s		4.5		3.5	3.5	4.5	
Max Green Setting (Gmax), s		62.9		29.1	14.5	44.9	
Max Q Clear Time (q_c+l1), s		5.3		6.2	4.0	12.5	
Green Ext Time (p_c), s		48.9		0.2	0.0	31.2	
Intersection Summary							
HCM 2010 Ctrl Delay			5.9				
HCM 2010 LOS			Α				

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	*	^	† 1>			7	
Traffic Volume (veh/h)	77	960	718	12	16	75	
Future Volume (veh/h)	77	960	718	12	16	75	
Number	5	2	6	16	7	14	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			0.97	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1863	1863	
Adj Flow Rate, veh/h	82	1021	764	13	17	80	
Adj No. of Lanes	1	2	2	0	1	1	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	106	2891	2512	43	116	198	
Arrive On Green	0.06	0.82	0.71	0.71	0.07	0.07	
Sat Flow, veh/h	1774	3632	3652	61	1774	1583	
Grp Volume(v), veh/h	82	1021	380	397	17	80	
Grp Sat Flow(s), veh/h/ln	1774	1770	1770	1850	1774	1583	
Q Serve(q s), s	3.1	5.1	5.5	5.5	0.6	3.2	
Cycle Q Clear(q c), s	3.1	5.1	5.5	5.5	0.6	3.2	
Prop In Lane	1.00	5.1	3.0	0.03	1.00	1.00	
Lane Grp Cap(c), veh/h	106	2891	1249	1306	116	198	
V/C Ratio(X)	0.78	0.35	0.30	0.30	0.15	0.40	
Avail Cap(c a), veh/h	378	3271	1249	1306	758	771	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	31.6	1.6	3.7	3.7	30.0	27.4	
Incr Delay (d2), s/veh	4.5	0.1	0.1	0.1	0.2	0.5	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.7	2.4	2.7	2.8	0.3	2.9	
LnGrp Delay(d),s/veh	36.1	1.7	3.9	3.9	30.2	27.9	
LnGrp LOS	D	A	Α.	Α.	C	C	
Approach Vol. veh/h		1103	777		97		
Approach Delay, s/veh		4.2	3.9		28.3		
Approach LOS		4.2 A	3.9 A		20.3 C		
Approacticos							
Timer	1	2	3	4	5	6	
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc), s		60.1		8.0	7.6	52.5	
Change Period (Y+Rc), s		4.5		3.5	3.5	4.5	
Max Green Setting (Gmax), s		62.9		29.1	14.5	44.9	
Max Q Clear Time (g_c+l1), s		7.1		5.2	5.1	7.5	
Green Ext Time (p_c), s		48.6		0.1	0.1	35.1	
Intersection Summary							
HCM 2010 Ctrl Delay			5.3				
HCM 2010 LOS			J.3				
110W 2010 E03			М				

AM Peak Hour - Existing Conditions Emerald Isle Traffic Impact Study

W-Trans Page 2

9/6/2016

PM Peak Hour - Existing Conditions Emerald Isle Traffic Impact Study

Intersection							ľ
Int Delay, s/veh	0.8						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		1>		ሻ	†	
Traffic Vol, veh/h	8	1	30	7	1	71	
Future Vol, veh/h	8	1	30	7	1	71	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	50	-	
Veh in Median Storage, #	0	-	0	-		0	
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	79	79	79	79	79	79	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	10	1	38	9	1	90	
Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	134	42	0	0	47	0	
Stage 1	42	-		-	-	-	
Stage 2	92	-	-	-	-	-	
Critical Hdwy	6.42	6.22		-	4.12	-	
Critical Hdwy Stg 1	5.42	-	-	-			
Critical Hdwy Stg 2	5.42	-	-	-			
Follow-up Hdwy	3.518	3.318	-	-	2.218	-	
Pot Cap-1 Maneuver	860	1029	-	-	1560		
Stage 1	980	-	-	-			
Stage 2	932	-	-	-			
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	859	1029	-	-	1560		
Mov Cap-2 Maneuver	859	-	-	-		-	
Stage 1	980	-	-	-			
Stage 2	931	-	-	-			
ŭ							

wov cap-z wancuvci	037							
Stage 1	980	-						
Stage 2	931	-	-	-	-	-		
Approach	WB		NB		SB			
HCM Control Delay, s	9.2		0		0.1			
HCM LOS	A							

Minor Lane/Major Mvmt	NBT	NBRW	/BLn1	SBL	SBT	
Capacity (veh/h)	-	-	875	1560	-	
HCM Lane V/C Ratio	-	-	0.013	0.001	-	
HCM Control Delay (s)	-	-	9.2	7.3	-	
HCM Lane LOS	-	-	Α	Α	-	
HCM 95th %tile Q(veh)	-		0	0		

						_
Intersection						
Int Delay, s/veh	1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		1>		ሻ	†
Traffic Vol, veh/h	10	1	55	9	1	36
Future Vol, veh/h	10	1	55	9	1	36
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	None
Storage Length	0	-	-	-	50	-
Veh in Median Storage, #	0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	11	1	62	10	1	40

Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	110	67	0	0	72	0	
Stage 1	67	-		-	-	-	
Stage 2	43	-	-	-	-	-	
Critical Hdwy	6.42	6.22			4.12		
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-		-	-	-	
Follow-up Hdwy	3.518	3.318	-	-	2.218	-	
Pot Cap-1 Maneuver	887	997			1528		
Stage 1	956	-	-	-	-	-	
Stage 2	979	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	886	997	-	-	1528	-	
Mov Cap-2 Maneuver	886	-	-	-	-	-	
Stage 1	956	-	-	-	-	-	
Stage 2	978	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	9.1		0		0.2		
HCM LOS	Α						

Minor Lane/Major Mvmt	NBT	NBRV	VBLn1	SBL	SBT	
Capacity (veh/h)		-	895	1528	-	
HCM Lane V/C Ratio	-	-	0.014	0.001	-	
HCM Control Delay (s)	-	-	9.1	7.4		
HCM Lane LOS	-	-	Α	Α	-	
HCM 95th %tile Q(veh)		-	0	0	-	

	•	→	-	•	<u> </u>	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	*	^	† 1>		*	1	
Traffic Volume (veh/h)	53	648	1151	12	11	103	
Future Volume (veh/h)	53	648	1151	12	11	103	
Number	5	2	6	16	7	14	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A pbT)	1.00			0.97	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1863	1863	
Adj Flow Rate, veh/h	56	689	1224	13	12	110	
Adj No. of Lanes	1	2	2	0	1	1	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	85	2816	2497	27	154	214	
Arrive On Green	0.05	0.80	0.70	0.70	0.09	0.09	
Sat Flow, veh/h	1774	3632	3679	38	1774	1583	
Grp Volume(v), veh/h	56	689	604	633	12	110	
Grp Sat Flow(s), veh/h/ln	1774	1770	1770	1855	1774	1583	
Q Serve(g_s), s	2.1	3.4	10.7	10.7	0.4	4.4	
Cycle Q Clear(g_c), s	2.1	3.4	10.7	10.7	0.4	4.4	
Prop In Lane	1.00			0.02	1.00	1.00	
Lane Grp Cap(c), veh/h	85	2816	1232	1292	154	214	
V/C Ratio(X)	0.66	0.24	0.49	0.49	0.08	0.51	
Avail Cap(c_a), veh/h	377	3264	1232	1292	757	752	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	31.9	1.8	4.8	4.8	28.6	27.4	
Incr Delay (d2), s/veh	3.2	0.0	0.3	0.3	0.1	0.7	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.1	1.6	5.3	5.6	0.2	3.9	
LnGrp Delay(d),s/veh	35.1	1.8	5.1	5.1	28.7	28.1	
LnGrp LOS	D	Α	Α	Α	С	С	
Approach Vol, veh/h		745	1237		122		
Approach Delay, s/veh		4.3	5.1		28.2		
Approach LOS		Α	Α		С		
Timer	1	2	3	4	5	6	
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc), s		58.8		9.4	6.8	52.0	
Change Period (Y+Rc), s		4.5		3.5	3.5	4.5	
Max Green Setting (Gmax), s		62.9		29.1	14.5	44.9	
Max Q Clear Time (q_c+l1), s		5.4		6.4	4.1	12.7	
Green Ext Time (p c), s		48.9		0.2	0.0	31.0	
Intersection Summary				0.2	0.0	00	
			/ 1				
HCM 2010 Ctrl Delay			6.1				
HCM 2010 LOS			Α				

	*	→	—	•	-	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	^	† 1>		*1	7
Traffic Volume (veh/h)	82	960	718	14	18	81
Future Volume (veh/h)	82	960	718	14	18	81
Number	5	2	6	16	7	14
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00			0.97	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1863	1863
Adj Flow Rate, veh/h	87	1021	764	15	19	86
Adj No. of Lanes	1	2	2	0	1	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	112	2878	2479	49	124	211
Arrive On Green	0.06	0.81	0.70	0.70	0.07	0.07
Sat Flow, veh/h	1774	3632	3641	70	1774	1583
Grp Volume(v), veh/h	87	1021	381	398	1774	86
Grp Sat Flow(s), veh/h/ln	1774	1770	1770	1848	1774	1583
Q Serve(g_s), s	3.3	5.2	5.7	5.7	0.7	3.4
Cycle Q Clear(g_c), s	3.3	5.2	5.7	5.7	0.7	3.4
Prop In Lane	1.00			0.04	1.00	1.00
Lane Grp Cap(c), veh/h	112	2878	1237	1291	124	211
V/C Ratio(X)	0.77	0.35	0.31	0.31	0.15	0.41
Avail Cap(c_a), veh/h	375	3247	1237	1291	753	772
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	31.6	1.7	4.0	4.0	30.0	27.2
Incr Delay (d2), s/veh	4.2	0.1	0.1	0.1	0.2	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.8	2.4	2.8	2.9	0.3	3.1
LnGrp Delay(d),s/veh	35.9	1.8	4.1	4.1	30.2	27.7
LnGrp LOS	D	A	Α	A	C	C
Approach Vol, veh/h		1108	779	- / (105	
Approach Delay, s/veh		4.4	4.1		28.1	
Approach LOS		4.4 A	4.1 A		20.1 C	
Approacti EUS					C	
Timer	1	2	3	4	5	6
Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		60.3		8.3	7.8	52.4
Change Period (Y+Rc), s		4.5		3.5	3.5	4.5
Max Green Setting (Gmax), s		62.9		29.1	14.5	44.9
Max Q Clear Time (q c+l1), s		7.2		5.4	5.3	7.7
Green Ext Time (p. c), s		48.6		0.1	0.1	34.9
4 - 7:						•
Intersection Summary			F /			
HCM 2010 Ctrl Delay			5.6			
HCM 2010 LOS			Α			

AM Peak Hour - Existing plus Project Emerald Isle Traffic Impact Study

W-Trans

Page 2

PM Peak Hour - Existing plus Project Emerald Isle Traffic Impact Study

Int Delay, s/veh 0.3
Lane Configurations Y Th Th Th Traffic Vol, veh/h 4 1 48 1 1 137 Future Vol, veh/h 4 1 48 1 1 137 Future Vol, veh/h 4 1 48 1 1 137 Conflicting Peds, #/hr 0 </td
Lane Configurations Y Image: Configuration of the proof of the p
Traffic Vol, veh/h 4 1 48 1 1 137 Future Vol, veh/h 4 1 48 1 1 137 Conflicting Peds, #hr 0 None No
Future Vol, veh/h 4 1 48 1 1 137 Conflicting Peds, #hr 0 None None None Storage Length 0 - - None - - 0 - - 0 - - 0 - - 0 - - 0 0 9 79 79 79 79 <t< td=""></t<>
Conflicting Peds, #/hr 0 0 0 0 0 0 Sign Control Stop Stop Free None - 0 - - 0 - - 0 0 - 0 0 9 79 79 79 79 79 79 79 79 79 79 79 79 79 79
Sign Control Stop Stop Free
RT Channelized None None None None Storage Length 0 - - 50 - Veh in Median Storage, # 0 - 0 - 0 - 0 Grade, % 0 - 0 - - 0 - 0 0 Page New New New New New New New New New Ne
Veh in Median Storage, # 0 - 0 - - 0 Grade, % 0 - 0 - - 0 Peak Hour Factor 79 79 79 79 79 79 Heavy Vehicles, % 2 2 2 2 2 2 2 Mvmt Flow 5 1 61 1 1 173 Major/Minor Minor1 Major1 Major2 Conflicting Flow All 237 61 0 0 62 0
Grade, % 0 - 0 - - 0 Peak Hour Factor 79
Peak Hour Factor 79
Heavy Vehicles, % 2 2 2 2 2 2 2 Major Minor 1 1 1 173 Major/Minor Minor1 Major Minor Major Minor Major Minor Major Minor 0 62 0
Mymit Flow 5 1 61 1 1 173 Major/Minor Minor1 Major1 Major2 Conflicting Flow All 237 61 0 0 62 0
Major/Minor Minor1 Major1 Major2 Conflicting Flow All 237 61 0 0 62 0
Conflicting Flow All 237 61 0 0 62 0
Conflicting Flow All 237 61 0 0 62 0
Stage 1 61
Stage 1
Stage 2 176
Critical Hdwy 6.42 6.22 4.12 -
Critical Hdwy Stg 1 5.42
Critical Hdwy Stg 2 5.42
Follow-up Hdwy 3.518 3.318 2.218 -
Pot Cap-1 Maneuver 751 1004 1541 -
Stage 1 962
Stage 2 855
Platoon blocked, %
Mov Cap-1 Maneuver 751 1004 1541 -
Mov Cap-2 Maneuver 751
Stage 1 962
Stage 2 854
Approach WB NB SB
HCM Control Delay, s 9.6 0 0.1
HCM LOS A
Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT
Capacity (veh/h) 791 1541 -
HCM Lane V/C Ratio 0.008 0.001 -
HCM Control Delay (s) 9.6 7.3 -
HCM Lane LOS A A -
HCM 95th %tile Q(veh) 0 0 -

Intersection Int Delay, s/veh	0.1						
Movement	WBL	WBR		NBT	NBR	SBL	SBT
Lane Configurations	¥			1>		*	
Traffic Vol, veh/h	2	0		122	3	0	72
Future Vol. veh/h	2	0		122	3	0	72
Conflicting Peds, #/hr	0	0		0	0	0	0
Sign Control	Stop	Stop		Free	Free	Free	Free
RT Channelized	-	None		-	None	-	None
Storage Length	0	-			-	50	-
Veh in Median Storage, #	0			0		-	0
Grade, %	0			0			0
Peak Hour Factor	89	89		89	89	89	89
Heavy Vehicles, %	2	2		2	2	2	2
Mymt Flow	2	0		137	3	0	81
WITH TIOW	2	0		137	3	0	01
Major/Minor	Minor1			Major1		Major2	
Conflicting Flow All	220	139		0	0	140	0
Stage 1	139				-		-
Stage 2	81			-	-	-	
Critical Hdwy	6.42	6.22		-	-	4.12	
Critical Hdwy Stg 1	5.42	-		-	-	-	
Critical Hdwy Stg 2	5.42	-		-	-	-	
Follow-up Hdwy	3.518	3.318		-	-	2.218	
Pot Cap-1 Maneuver	768	909				1443	
Stage 1	888	-					
Stage 2	942						-
Platoon blocked, %							
Mov Cap-1 Maneuver	768	909				1443	
Mov Cap-2 Maneuver	768					-	
Stage 1	888						
Stage 2	942	-		-			
Approach	WB			NB		SB	
HCM Control Delay, s	9.7			0		0	
HCM LOS	Α						
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT			
Capacity (veh/h)		- 768	1443				
HCM Lane V/C Ratio		- 0.003	-	-			
HCM Control Delay (s)		- 9.7	0				
HCM Lane LOS		- A	Α	-			
HCM 95th %tile Q(veh)		- 0	0	-			

	•	→	-	•	/	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	"	^	† p		7	7	
Traffic Volume (veh/h)	63	662	1165	15	24	152	
Future Volume (veh/h)	63	662	1165	15	24	152	
Number	5	2	6	16	7	14	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			0.97	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1863	1863	
Adj Flow Rate, veh/h	67	704	1239	16	26	162	
Adi No. of Lanes	1	2	2	0	1	1	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	91	2707	2376	31	218	276	
Arrive On Green	0.05	0.76	0.66	0.66	0.12	0.12	
Sat Flow, veh/h	1774	3632	3669	46	1774	1583	
Grp Volume(v), veh/h	67	704	613	642	26	162	
Grp Sat Flow(s), veh/h/ln	1774	1770	1770	1853	1774	1583	
Q Serve(q s), s	2.7	4.2	12.7	12.7	0.9	6.7	
Cycle Q Clear(q c), s	2.7	4.2	12.7	12.7	0.9	6.7	
Prop In Lane	1.00	1.2	12.7	0.02	1.00	1.00	
Lane Grp Cap(c), veh/h	91	2707	1176	1231	218	276	
V/C Ratio(X)	0.73	0.26	0.52	0.52	0.12	0.59	
Avail Cap(c_a), veh/h	360	3115	1176	1231	722	726	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	33.4	2.5	6.2	6.2	27.9	27.1	
Incr Delay (d2), s/veh	4.2	0.1	0.4	0.4	0.1	0.7	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.4	2.0	6.3	6.6	0.0	5.9	
LnGrp Delay(d),s/veh	37.6	2.5	6.6	6.6	28.0	27.9	
LnGrp LOS	37.6 D	2.5 A	0.0 A	0.0 A	28.0 C	21.9 C	
Approach Vol, veh/h	U	771	1255	А	188	C	
Approach Voi, ven/n Approach Delay, s/veh		5.6	6.6		27.9		
					27.9 C		
Approach LOS		Α	Α		C		
Timer	1	2	3	4	5	6	7
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc), s		59.2		12.3	7.2	52.0	
Change Period (Y+Rc), s		4.5		3.5	3.5	4.5	
Max Green Setting (Gmax), s		62.9		29.1	14.5	44.9	
Max Q Clear Time (q_c+l1), s		6.2		8.7	4.7	14.7	
Green Ext Time (p_c), s		48.5		0.3	0.0	29.2	
Intersection Summary							
HCM 2010 Ctrl Delay			8.0				
HCM 2010 LOS			Α.				
			/1				

	*	-	—	•	-	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	† †	† 1>		ሻ	7
Traffic Volume (veh/h)	130	977	736	26	24	104
Future Volume (veh/h)	130	977	736	26	24	104
Number	5	2	6	16	7	14
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00			0.97	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1863	1863
Adj Flow Rate, veh/h	138	1039	783	28	26	111
Adj No. of Lanes	1	2	2	0	1	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	175	2838	2278	81	153	292
Arrive On Green	0.10	0.80	0.65	0.65	0.09	0.09
Sat Flow, veh/h	1774	3632	3574	124	1774	1583
Grp Volume(v), veh/h	138	1039	398	413	26	111
Grp Sat Flow(s),veh/h/ln	1774	1770	1770	1836	1774	1583
Q Serve(g_s), s	5.4	5.9	7.2	7.2	1.0	4.4
Cycle Q Clear(g_c), s	5.4	5.9	7.2	7.2	1.0	4.4
Prop In Lane	1.00			0.07	1.00	1.00
Lane Grp Cap(c), veh/h	175	2838	1158	1201	153	292
V/C Ratio(X)	0.79	0.37	0.34	0.34	0.17	0.38
Avail Cap(c_a), veh/h	360	3116	1158	1201	723	801
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	31.5	2.0	5.5	5.5	30.3	25.5
Incr Delay (d2), s/veh	3.0	0.1	0.2	0.2	0.2	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.8	2.8	3.5	3.6	0.5	4.0
LnGrp Delay(d),s/veh	34.5	2.1	5.7	5.7	30.5	25.8
LnGrp LOS	C	Α	Α.	Α.	C	23.0 C
Approach Vol, veh/h		1177	811	/1	137	
Approach Delay, s/veh		5.9	5.7		26.7	
Approach LOS		Α	Α		С	
Timer	1	2	3	4	5	6
Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		61.8		9.7	10.5	51.2
Change Period (Y+Rc), s		4.5		3.5	3.5	4.5
Max Green Setting (Gmax), s		62.9		29.1	14.5	44.9
Max Q Clear Time (q c+l1), s		7.9		6.4	7.4	9.2
Green Ext Time (p_c), s		49.4		0.4	0.1	33.8
, ,		77.7		0.2	0.1	33.0
Intersection Summary						
HCM 2010 Ctrl Delay			7.1		· ·	
HCM 2010 LOS			Α			

AM Peak Hour - Baseline Conditions Emerald Isle Traffic Impact Study W-Trans Page 2 PM Peak Hour - Baseline Conditions Emerald Isle Traffic Impact Study

Intersection							
	0.5						
Movement	WBL	WBR		NBT	NBR	SBL	SBT
Lane Configurations	W			1>		*1	†
Traffic Vol, veh/h	8	1		48	7	1	137
Future Vol. veh/h	8	1		48	7	1	137
Conflicting Peds, #/hr	0	0		0	0	0	0
Sign Control	Stop	Stop		Free	Free	Free	Free
RT Channelized	-	None		-	None	-	None
Storage Length	0	-		-	-	50	
Veh in Median Storage, #	0	-		0	-	-	0
Grade, %	0	-		0	-	-	0
Peak Hour Factor	79	79		79	79	79	79
Heavy Vehicles, %	2	2		2	2	2	2
Mvmt Flow	10	1		61	9	1	173
Major/Minor	Minor1			Major1		Major2	
Conflicting Flow All	241	65		0	0	70	0
Stage 1	65	-		-	-	-	
Stage 2	176	-		-	-	-	
Critical Hdwy	6.42	6.22		-	-	4.12	-
Critical Hdwy Stg 1	5.42	-		-	-	-	-
Critical Hdwy Stg 2	5.42	-		-	-	-	-
Follow-up Hdwy	3.518	3.318		-	-	2.218	-
Pot Cap-1 Maneuver	747	999		-	-	1531	-
Stage 1	958	-		-	-	-	-
Stage 2	855	-		-	-		-
Platoon blocked, %				-	-		-
Mov Cap-1 Maneuver	747	999		-	-	1531	
Mov Cap-2 Maneuver	747	-		-	-	-	-
Stage 1	958	-		-	-	-	-
Stage 2	854				-		-
Approach	WB			NB		SB	
HCM Control Delay, s	9.8			0		0.1	
HCM LOS	A						
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT			
Capacity (veh/h)	INDI	- 769	1531	301			
HCM Lane V/C Ratio			0.001				
HCM Control Delay (s)		- 9.8	7.4	-			
HCM Lane LOS		- 9.8 - A	7.4 A				
HCM 95th %tile Q(veh)		- A	A 0				
ncivi 40tti %tile Q(ven)		- 0	U	-			

Movement		۶	→	-	4	/	4		
Lane Configurations	Movement	FBI	FRT	WRT	WBR	SBI	SBR		
Traffic Volume (veh/h) 135 977 736 14 26 110 Future Volume (veh/h) 135 977 736 14 26 110 Number Volume (veh/h) 135 977 736 14 26 110 Number 5 2 6 16 7 14 Initial O (Ob), veh 0 0 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 0,97 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1863 1863 1863 1863 1900 1863 1863 Adj Flow Rate, veh/h 144 1039 783 15 28 117 Adj No. of Lanes 1 2 2 0 1 1 Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 Percent Heavy Veh, 2 2 2 2 2 2 2 2 Cap, veh/h 181 2826 2299 44 160 305 Arrive On Green 0.10 0.80 0.65 0.65 0.09 0.09 Sat Flow, veh/h 1774 3632 3643 68 1774 1583 Grp Volume(v), veh/h 144 1039 390 408 28 117 Grp Sat Flow(s), veh/h/ln 1774 1770 1848 1774 1583 Grp Volume(v), veh/h 1774 1770 1770 1848 1774 1583 O Serve(g_s), s 5.7 6.0 7.2 7.2 1.0 4.6 Cycle O Clear(g_c), s 5.7 6.0 7.2 7.2 1.0 4.6 Prop In Lane 1.00 0.04 1.00 1.00 Lane Grp Cap(c), veh/h 358 3100 1146 1197 160 305 ViC Ratio(X) 0.79 0.37 0.34 0.34 0.18 0.38 Avail Cap(c_a), veh/h 358 3100 1146 1197 719 804 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), skveh 31.5 2.1 5.7 5.7 30.2 25.3 Incr Delay (d2), skveh 3.0 0.1 0.2 0.2 0.2 0.3 Initial O Delay(d3), skveh 31.5 2.1 5.7 5.7 30.2 25.3 Incr Delay (d2), skveh 34.5 2.1 5.9 5.9 30.4 25.6 LnGrp Delay (d2), skveh 1183 798 145 Approach LOS A A C C Timer 1 2 3 4 5 6 7 Assigned Phs 2 4 5 6 Approach Vol, veh/h 1183 798 145 Approach Delay, skveh 6.1 5.9 26.5 Approach LOS A A C C Timer 1 2 3 4 5 6 7 Assigned Phs 5 6 Psp Duration (G+Y+Rc), s 61.9 10.0 10.0 10.8 51.0 Change Period (Y+Rc), s 64.9 29.1 14.5 44.9 Max O Clear Time (g_c+II), s 8.0 6.6 7.7 9.2 Green Ext Time (g_c+II), s 8.0 6.6 7.7 9.2 Green Ext Time (g_c+II), s 8.0 6.6 6.7 7.9 9.2 Green Ext Time (g_c+II), s 8.0 6.6 6.7 7.9 9.2 Green Ext Time (g_c+II), s 8.0 6.6 6.7 7.9 9.2 Green Ext Time (g_c+II), s 8.0 6.6 6.7 7.9 9.2					WEIN				
Future Volume (veh/h) Number 5 2 6 16 7 14 Initial O (Ob), veh 0 0 0 0 0 0 0 Ped-Bike Adji(A pbT) Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sal Flow, veh/h/ln Adj Flow Rate, veh/h Adj Flow Rate, veh/h Adj Flow Rate, veh/h 144 1039 783 15 28 117 Adj No. of Lanes 1 2 2 0 1 1 Peak Hour Factor Peak Hour Factor Pear Heavy Veh, % 2 2 2 2 2 2 Cap, veh/h 181 2826 2299 44 160 305 Arrive On Green 0.10 0.80 0.65 0.65 0.09 0.09 Sal Flow, veh/h 1774 3632 3643 68 1774 1583 Grp Volume(v), veh/h 1774 1770 1770 1848 1774 1583 O Serve(g_s), s Cycle O Clear(g_c), s 5.7 6.0 7.2 7.2 1.0 4.6 Cycle O Clear(g_c), s 5.7 6.0 7.2 7.2 1.0 4.6 Cycle O Clear(g_c), s 5.7 6.0 7.2 7.2 1.0 4.6 Prop In Lane 1.00 Lane Grp Cap(c), veh/h 181 2826 1146 1197 160 305 Avail Cap(c_a), veh/h 181 2826 1146 1197 160 305 Avail Cap(c_a), veh/h 181 2826 1146 1197 160 305 Avail Cap(c_a), veh/h 181 2826 1146 1197 160 305 Avail Cap(c_a), veh/h 181 2826 1146 1197 719 804 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(l) 1.00 1.00 0.0 0.0 0.0 0.0 Mile BackOfO(50%),veh/h 183 798 145 Approach Delay(d3),s/veh 183 798 145 Approach LOS A A C C Timer 1 2 3 4 5 6 7 Assigned Phs C A A A C C Immer 1 2 3 4 5 6 7 Assigned Phs A S G S G S G S G S G S G S G S G S G S					14	-			
Number									
Initial Q (Ob), veh Ped-Bike Adj(A_pbT) 1.00 Ped-Bike Adj(A_pbT) 1.00 Ped-Bike Adj(A_pbT) 1.00 Initial Q (10,0), veh Parking Bus, Adj Initial Q (10,0) Initial Q (10,0) Initial Q (10,0), veh Initial									
Ped-Bike Adj(A_pbT)	Initial Q (Qb), veh			0			0		
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Adj Adj Flow, veh/h/ln 1863 1862 229 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1.00			0.97	1.00	1.00		
Adj Saĭ Flow, veh/h/ln 1863 1863 1863 1900 1863 1863 Adj No. of Lanes 1 2 2 0 1 1 Adj No. of Lanes 1 2 2 0 1 1 Peak Hour Factor 0.94 0.05 5.7 6.0 0.65 0.65 0.09 0.09 2.0		1.00	1.00	1.00	1.00	1.00	1.00		
Adj No. of Lanes 1 2 2 0 1 1 Peak Hour Factor 0.94 0.04 1.00 0.09 0.09 5.7 6.0 7.2 7.2 1.0 4.6 Cycle Oclear(9c), weh/h 181 1774 170 1848 1774 1583 0.0 0.0 0.0 1.00 1.00		1863	1863	1863	1900	1863	1863		
Peak Hour Factor 0.94 0.09 0.00	Adj Flow Rate, veh/h	144	1039	783	15	28	117		
Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Adj No. of Lanes	1	2	2	0	1	1		
Cap, veh/h 181 2826 2299 44 160 305 Arrive On Green 0.10 0.80 0.65 0.65 0.09 0.09 Sat Flow, veh/h 1774 3632 3643 68 1774 1583 Grp Volume(v), veh/h 144 1039 390 408 28 117 Grp Sat Flow(s), veh/h/ln 1774 1770 1770 1848 1774 1583 O Serve(g_s), s 5.7 6.0 7.2 7.2 1.0 4.6 Cycle Q Clear(g_c), s 5.7 6.0 7.2 7.2 1.0 4.6 Prop In Lane 1.00 0.04 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 181 2826 1146 1197 160 305 V/C Ratio(X) 0.79 0.37 0.34 0.34 0.18 0.38 Avail Cap(c_a), veh/h 181 2826 1146 1197 719 804 HCM Pla	Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94		
Arrive On Green 0.10 0.80 0.65 0.65 0.09 0.09 Sat Flow, veh/h 1774 3632 3643 68 1774 1583 Grp Volume(v), veh/h 144 1039 390 408 28 117 Grp Sat Flow(s), veh/hIn 1774 1770 1770 1848 1774 1583 Q Serve(g_s), s 5.7 6.0 7.2 7.2 1.0 4.6 Cycle O Clear(g_c), s 5.7 6.0 7.2 7.2 1.0 4.6 Prop In Lane 1.00 0.04 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 181 2826 1146 1197 160 305 V/C Ratio(X) 0.79 0.37 0.34 0.18 0.38 Avail Cap(c_a), veh/h 358 3100 1146 1197 719 804 HCM Platon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Percent Heavy Veh, %	2	2	2	2	2	2		
Sat Flow, veh/h 1774 3632 3643 68 1774 1583 Grp Volume(v), veh/h 144 1039 390 408 28 117 Grp Sat Flow(s), veh/h/h 1774 1770 1770 1848 1774 1583 O Serve(g. s), s 5.7 6.0 7.2 7.2 1.0 4.6 Cycle O Clear(g. c), s 5.7 6.0 7.2 7.2 1.0 4.6 Prop In Lane 1.00 0.04 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 181 2826 1146 1197 719 804 HCM Platoan Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(l) 1.00	Cap, veh/h	181	2826	2299	44	160	305		
Grp Volume(v), veh/h Grp Sat Flow(s), veh/h/ln 1774 1770 1770 1770 1848 1774 1583 Q Serve(g_s), s 5.7 6.0 7.2 7.2 1.0 4.6 Cycle Q Clear(g_c), s 5.7 6.0 7.2 7.2 1.0 4.6 Prop In Lane 1.00 0.04 1.00 1.00 1.00 1.00 1.00 1.00	Arrive On Green	0.10	0.80	0.65	0.65	0.09	0.09		
Grp Sat Flow(s),veh/h/ln 1774 1770 1770 1848 1774 1583 O Serve(g_s), s 5.7 6.0 7.2 7.2 1.0 4.6 Cycle O Clear(g_c), s 5.7 6.0 7.2 7.2 1.0 4.6 Prop In Lane 1.00 0.04 1.00 1.00 Lane Grp Cap(c), veh/h 181 2826 1146 1197 160 305 V/C Ratio(X) 0.79 0.37 0.34 0.34 0.18 0.38 Avail Cap(c_a), veh/h 358 3100 1146 1197 719 804 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Lupstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Lupstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 31.5 2.1 5.7 5.7 30.2 25.3 Inter Delay (d2), s/veh 3.0 0.1 0.2 0.2 0.2 0.3 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Sile BackOf(C(50%),veh/ln 2.9 2.9 3.5 3.7 0.5 4.2 LnGrp Delay (d),s/veh 34.5 2.1 5.9 5.9 30.4 25.6 LnGrp LOS C A A A C C C Approach Delay, s/veh 6.1 5.9 26.5 Approach Vol, veh/h 1183 798 145 Approach LOS A A C C C Timer 1 2 3 4 5 6 7 Assigned Phs 2 4 5 6 Phs Duration (G+Y+Rc), s 61.9 10.0 10.8 51.0 Change Period (Y+Rc), s 4.5 3.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max Q Clear Time (g_c+II), s 8.0 6.6 7.7 9.2 Green Ext Time (g_c-HI), s 49.3 Intersection Summary	Sat Flow, veh/h	1774	3632	3643	68	1774	1583		
Q Serve(g_s), s 5.7 6.0 7.2 7.2 1.0 4.6 Cycle Q Clear(g_c), s 5.7 6.0 7.2 7.2 1.0 4.6 Prop In Lane 1.00 0.04 1.00 1.00 Lane Grp Cap(c), veh/h 181 2826 1146 1197 160 305 V/C Ratio(X) 0.79 0.37 0.34 0.34 0.18 0.38 Avail Cap(c_a), veh/h 358 3100 1146 1197 719 804 HCM Platon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(l) 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(l) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 31.5 2.1 5.7 5.7 30.2 25.3 Initial Q Delay(33),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfO(50%),veh/ln 2.9 2.9 3.5 3.7 0.5 4.2 LnGrp Delay(d),s/veh 34.5 2.1 5.9 5.9 30.4 25.6 LnGrp LOS C A A A C C Approach Vol, veh/h 1183 798 145 Approach Delay, s/veh 6.1 5.9 26.5 Approach LOS A A C Timer 1 2 3 4 5 6 7 Assigned Phs 2 4 5 6 7 Assigned Phs 2 4 5 6 6 Phs Duration (G+Y+Rc), s 61.9 10.0 10.8 51.0 Change Period (Y+Rc), s 4.5 3.5 3.5 3.5 4.5 Max Green Settling (Gmax), s 62.9 29.1 14.5 44.9 Max Q Clear Time (g_c-H1), s 8.0 6.6 7, 7 9.2 Green Ext Time (g_c-H1), s 49.3 0.2 0.1 33.8 Intersection Summary	Grp Volume(v), veh/h	144	1039	390	408	28	117		
Cycle O Clear(g_c), s 5.7 6.0 7.2 7.2 1.0 4.6 Prop In Lane 1.00 0.04 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 181 2826 1146 1197 160 305 V/C Ratio(X) 0.79 0.37 0.34 0.34 0.18 0.38 Avail Cap(c_a), veh/h 358 3100 1146 1197 719 804 HCM Platoon Ratio 1.00	Grp Sat Flow(s), veh/h/ln	1774	1770	1770	1848	1774	1583		
Prop In Lane 1.00 0.04 1.00 1.00 Lane Grp Cap(c), veh/h 181 2826 1146 1197 160 305 V/C Ratio(X) 0.79 0.37 0.34 0.34 0.38 0.38 Avail Cap(c_a), veh/h 358 3100 1146 1197 719 804 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upsifrom Delay (d), s/veh 31.5 2.1 5.7 5.7 30.2 25.3 Incr Delay (d2), s/veh 3.0 0.1 0.2 0.2 0.2 0.3 Initial Q Delay(d3), s/veh 0.0	Q Serve(g_s), s	5.7	6.0	7.2	7.2	1.0	4.6		
Lane Grp Cap(c), veh/h VIC Ratio(X) 0.79 0.37 0.34 0.34 0.18 0.38 Avail Cap(c_a), veh/h 358 3100 1146 1197 719 804 HCM Platoon Ratio 1.00 1	Cycle Q Clear(g_c), s	5.7	6.0	7.2	7.2	1.0	4.6		
V/C Ratio(X) 0.79 0.37 0.34 0.34 0.18 0.38 Avail Cap(_a), veh/h 358 3100 1146 1197 719 804 HCM Platon Ratio 1.00 0.0	Prop In Lane	1.00			0.04	1.00	1.00		
Avail Cap(c_a), veh/h HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Lane Grp Cap(c), veh/h	181	2826	1146	1197	160	305		
HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 31.5 2.1 5.7 5.7 30.2 25.3 Incr Delay (d2), s/veh 3.0 0.1 0.2 0.2 0.2 0.3 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	V/C Ratio(X)	0.79	0.37	0.34	0.34	0.18	0.38		
Upstream Filter(l) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 31.5 2.1 5.7 5.7 30.2 25.3 Introduced Delay (d2), s/veh 3.0 0.1 0.2 0.2 0.2 0.3 Introduced Delay (d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Avail Cap(c_a), veh/h	358	3100	1146	1197	719	804		
Uniform Delay (d), s/veh 31.5 2.1 5.7 5.7 30.2 25.3 Incr Delay (d2), s/veh 3.0 0.1 0.2 0.2 0.2 0.3 Initial O Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfO(50%), veh/ln 2.9 2.9 3.5 3.7 0.5 4.2 LnGrp Delay(d), s/veh 34.5 2.1 5.9 5.9 30.4 25.6 LnGrp LOS C A A A C C Approach Vol, veh/h 1183 798 145 4.5<	HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Incr Delay (d2), s/veh 3.0	Upstream Filter(I)	1.00	1.00				1.00		
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0	Uniform Delay (d), s/veh	31.5	2.1	5.7	5.7	30.2	25.3		
%lle BackOfÓ(50%),veh/ln 2.9 2.9 3.5 3.7 0.5 4.2 LnGrp Delay(d),s/veh 34.5 2.1 5.9 5.9 30.4 25.6 LnGrp LOS C A A A C C C Approach Vol, veh/h 1183 798 145 Approach Delay, s/veh 6.1 5.9 26.5 Approach LOS A A A C C C Approach LOS A A A C C C Approach LOS A A A C C C Approach LOS A BASigned Phs 2 2 4 5 6 7 8 Assigned Phs 2 2 4 5 6 7 8 Approach LOS Change Period (Y+Rc), s 61.9 10.0 10.8 51.0 Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max O Clear Time (g_c+11), s 8.0 6.6 7.7 9.2 Green Ext Time (p_c), s 49.3 0.2 0.1 33.8 Intersection Summary	Incr Delay (d2), s/veh	3.0	0.1	0.2	0.2	0.2	0.3		
LnGrp Delay(d),s/veh LnGrp LOS C A A A A C C C Approach Vol, veh/h Approach Delay, s/veh Approach LOS A A A A C C C Approach Elay, s/veh Approach LOS A A A A C C C Approach LOS A A A C C C Approach LOS A A A C C A A A A C C A A A A C C A A A A C C A A A A C C A A A A C C A A A A C C A A A A C C A A A A C C A A A A C A A A A C C A A A A C A A A A C A A A A C A A A A C A A A A C A A A A A C A A A A A A C A		0.0	0.0	0.0	0.0	0.0	0.0		
LnGrp LOS C A A A C C Approach Vol, veh/h 1183 798 145 Approach Delay, s/veh 6.1 5.9 26.5 Approach LOS A A C Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 5 6 7 8 Phs Duration (G+Y+Rc), s 61.9 10.0 10.8 51.0 51.0 Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max Q Clear Time (g_c+II), s 8.0 6.6 7.7 9.2 Green Ext Time (p_c), s 49.3 0.2 0.1 33.8									
Approach Vol, veh/h Approach Delay, s/veh Approach LOS A A A C Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 5 6 Phs Duration (G+Y+Rc), s 61.9 10.0 10.8 51.0 Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max Q Clear Time (g_C+II), s 8.0 Green Ext Time (g_C, s), s 49.3 0.2 0.1 33.8									
Approach Delay, s/veh 6.1 5.9 26.5 Approach LOS A A C Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 5 6 7 8 Phs Duration (G+Y+Rc), s 61.9 10.0 10.8 51.0 51.0 Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max O Clear Time (g_c+II), s 8.0 6.6 7.7 9.2 Green Ext Time (g_c-I), s 49.3 0.2 0.1 33.8		С			Α		С		
Approach LOS A A C Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 5 6 7 8 Phs Duration (G+Y+Rc), s 61.9 10.0 10.8 51.0 10.0 10.8 51.0 10.0 10.8 51.0 10.0 10.8 51.0 10.0 10.8 51.0 10.0 10.8 51.0 10.0 10.8 51.0 10.0 10.8 51.0 10.0 10.8 51.0 10.0 10.8 51.0 10.0 10.8 51.0 10.0 10.8 51.0 10.0 10.8 51.0 10.0 10.8 51.0 10.0 10.8 51.0 10.0 10.8 51.0 10.0 10.8 51.0 10.0 10.8 51.0 10.0 10.8 11.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0			1183	798					
Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 5 6 Phs Duration (G+Y+Rc), s 61.9 10.0 10.8 51.0 Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max Q Clear Time (g_c+11), s 8.0 6.6 7.7 9.2 Green Ext Time (p_c), s 49.3 0.2 0.1 33.8									
Assigned Phs 2 4 5 6 Phs Duration (G+Y+Rc), s 61.9 10.0 10.8 51.0 Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max Q Clear Time (g_c+I1), s 8.0 6.6 7.7 9.2 Green Ext Time (p_c), s 49.3 0.2 0.1 33.8 Intersection Summary	Approach LOS		Α	Α		С			
Phs Duration (G+Y+Rc), s 61.9 10.0 10.8 51.0 Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max Q Clear Time (g_c+II), s 8.0 6.6 7.7 9.2 Green Ext Time (p_c), s 49.3 0.2 0.1 33.8 Intersection Summary	Timer	1		3	4	5	6	7	8
Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max Q Clear Time (g_c+l1), s 8.0 6.6 7.7 9.2 Green Ext Time (p_c), s 49.3 0.2 0.1 33.8 Intersection Summary	Assigned Phs		2		4	5	6		
Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max O Clear Time (g_c+II), s 8.0 6.6 7.7 9.2 Green Ext Time (g_c), s 49.3 0.2 0.1 33.8 Intersection Summary	Phs Duration (G+Y+Rc), s		61.9		10.0	10.8	51.0		
Max Q Clear Time (g_c+l1), s 8.0 6.6 7.7 9.2 Green Ext Time (g_c), s 49.3 0.2 0.1 33.8 Intersection Summary			4.5		3.5	3.5	4.5		
Green Ext Time (p_c), s 49.3 0.2 0.1 33.8 Intersection Summary	Max Green Setting (Gmax), s				29.1	14.5	44.9		
Intersection Summary	Max Q Clear Time (g_c+l1), s		8.0		6.6	7.7	9.2		
	Green Ext Time (p_c), s		49.3		0.2	0.1	33.8		
HCM 2010 Ctrl Delay 7.4	Intersection Summary								
	HCM 2010 Ctrl Delay			7.4					
HCM 2010 LOS A	HCM 2010 LOS			Α					

AM Peak Hour - Baseline plus Project Emerald Isle Traffic Impact Study

W-Trans

Page 1

05/02/2017

PM Peak Hour - Baseline plus Project Emerald Isle Traffic Impact Study

	۶	→	+	4	-	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	*	^	↑ ↑		*	7	
Traffic Volume (veh/h)	67	662	1165	17	25	155	
Future Volume (veh/h)	67	662	1165	17	25	155	
Number	5	2	6	16	7	14	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			0.97	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1863	1863	
Adj Flow Rate, veh/h	71	704	1239	18	27	165	
Adj No. of Lanes	1	2	2	0	1	1	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	94	2702	2363	34	222	281	
Arrive On Green	0.05	0.76	0.66	0.66	0.12	0.12	
Sat Flow, veh/h	1774	3632	3662	52	1774	1583	
Grp Volume(v), veh/h	71	704	614	643	27	165	
Grp Sat Flow(s),veh/h/ln	1774	1770	1770	1852	1774	1583	
Q Serve(g_s), s	2.8	4.2	12.9	12.9	1.0	6.9	
Cycle Q Clear(g_c), s	2.8	4.2	12.9	12.9	1.0	6.9	
Prop In Lane	1.00			0.03	1.00	1.00	
Lane Grp Cap(c), veh/h	94	2702	1171	1226	222	281	
V/C Ratio(X)	0.76	0.26	0.52	0.52	0.12	0.59	
Avail Cap(c_a), veh/h	359	3105	1171	1226	720	726	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	33.5	2.5	6.3	6.3	27.9	27.1	
Incr Delay (d2), s/veh	4.6	0.1	0.4	0.4	0.1	0.7	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.5	2.0	6.3	6.6	0.5	6.0	
LnGrp Delay(d),s/veh	38.2	2.6	6.7	6.7	28.0	27.8	
LnGrp LOS	D	A	A	A	C	С	
Approach Vol, veh/h		775	1257		192		
Approach Delay, s/veh Approach LOS		5.8 A	6.7 A		27.8 C		
''							
Timer	1	2	3	4	5	6	7 8
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc), s		59.2		12.5	7.3	52.0	
Change Period (Y+Rc), s		4.5		3.5	3.5	4.5	
Max Green Setting (Gmax), s		62.9		29.1	14.5	44.9	
Max Q Clear Time (g_c+l1), s		6.2		8.9	4.8	14.9	
Green Ext Time (p_c), s		48.5		0.3	0.0	29.0	
Intersection Summary			0.6				
HCM 2010 Ctrl Delay			8.2				
HCM 2010 LOS			Α				

latana atian							
Intersection Int Delay, s/veh	0.5						
Movement	WBL	WBR		NBT	NBR	SBL	SBT
Lane Configurations	¥			1≽		ሻ	†
Traffic Vol, veh/h	10	1		122	9	0	72
Future Vol, veh/h	10	1		122	9	0	72
Conflicting Peds, #/hr	0	0		0	0	0	0
Sign Control	Stop	Stop		Free	Free	Free	Free
RT Channelized		None		-	None	-	None
Storage Length	0	-		-	-	50	-
Veh in Median Storage, #	0	-		0	-	-	0
Grade, %	0	-		0	-	-	0
Peak Hour Factor	89	89		89	89	89	89
Heavy Vehicles, %	2	2		2	2	2	2
Mvmt Flow	11	1		137	10	0	81
Major/Minor	Minor1			Major1		Major2	
Conflicting Flow All	223	142		0	0	147	0
Stage 1	142				-		-
Stage 2	81						
Critical Hdwy	6.42	6.22				4.12	
Critical Hdwy Stg 1	5.42	0.22				1.12	
Critical Hdwy Stg 2	5.42						
Follow-up Hdwy	3.518	3.318				2.218	
Pot Cap-1 Maneuver	765	906				1435	
Stage 1	885	700				. 100	
Stage 2	942	-					
Platoon blocked. %	, 12						
Mov Cap-1 Maneuver	765	906				1435	
Mov Cap-1 Maneuver	765	700				1433	
Stage 1	885						
Stage 2	942						
Stage 2	742						
Approach	WB			NB		SB	
HCM Control Delay, s	9.7			0		0	
HCM LOS	9.7 A			U		U	
I ICIVI EUS	А						
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT			
	IND I	- 776		301			
Capacity (veh/h)		- 776					
HCM Cantral Dalay (s)	-		- 0				
HCM Control Delay (s)			-				
HCM Lane LOS		- A	A	-			
HCM 95th %tile Q(veh)		- 0	0	-			

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		f)		ሻ	†
Traffic Vol, veh/h	5	1	54	1	1	276
Future Vol, veh/h	5	1	54	1	1	276
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	None
Storage Length	0	-	-	-	50	-
Veh in Median Storage, #	0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	79	79	79	79	79	79
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	6	1	68	1	1	349

Minor1		Major1		Major2		
421	69	0	0	70	0	
69	-	-	-	-	-	
352	-	-	-	-	-	
6.42	6.22	-	-	4.12	-	
5.42	-	-	-	-	-	
5.42	-	-	-	-	-	
3.518	3.318	-	-	2.218	-	
589	994			1531	-	
954	-	-	-	-	-	
712	-	-	-	-	-	
		-	-		-	
589	994	-	-	1531	-	
589	-	-	-	-	-	
954	-	-	-	-	-	
712	-	-	-	-	-	
WB		NB		SB		
10.8		0		0		
В						
	421 69 352 6.42 5.42 5.42 3.518 589 954 712 589 589 954 712	421 69 69 - 352 - 6.42 6.22 5.42 - 5.42 - 3.518 3.318 589 994 954 - 712 - 589 994 589 - 954 - 712 -	421 69 0 69	421 69 0 0 69 352 6.42 6.22 5.42 3.518 3.318 3.518 3.318 7.12 589 994 712 589 994 712 589 994 712 WB NB 10.8 0	421 69 0 0 70 69 - - - - 352 - - - - - 6.42 6.22 - - 4.12 5.42 - - - - - 3.518 3.318 - - 2.218 589 994 - - 1531 954 - - - - 589 994 - - 1531 589 994 - - 1531 589 - - - - 712 - - - - 712 - - - - WB NB SB 10.8 0 0	421 69 0 0 70 0 69 - - - - - - 352 -<

Minor Lane/Major Mvmt	NBT	NBRWBL	n1 SBL	SBT	
Capacity (veh/h)	-	- 6	32 1531	-	
HCM Lane V/C Ratio	-	- 0.0	12 0.001	-	
HCM Control Delay (s)	-	- 1	0.8 7.4	-	
HCM Lane LOS	-	-	B A	-	
HCM 95th %tile Q(veh)	-	-	0 0	-	

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		4		ሻ	†
Traffic Vol, veh/h	2	0	274	3	0	81
Future Vol, veh/h	2	0	274	3	0	81
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	50	-
Veh in Median Storage, #	0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	2	0	308	3	0	91

Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	401	310	0	0	311	0	
Stage 1	310					-	
Stage 2	91	-	-	-	-	-	
Critical Hdwy	6.42	6.22			4.12	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	-	-	2.218	-	
Pot Cap-1 Maneuver	605	730		-	1249	-	
Stage 1	744	-	-	-	-	-	
Stage 2	933	-		-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	605	730	-	-	1249	-	
Mov Cap-2 Maneuver	605	-	-	-	-	-	
Stage 1	744	-		-	-	-	
Stage 2	933	-	-	-	-	-	
, and the second							
Approach	WB		NB		SB		
HCM Control Delay, s	11		0		0		
HCM LOS	В						

Minor Lane/Major Mvmt	NBT	NBR\	WBLn1	SBL	SBT	
Capacity (veh/h)	-	-	605	1249	-	
HCM Lane V/C Ratio	-	-	0.004	-	-	
HCM Control Delay (s)	-	-	11	0	-	
HCM Lane LOS	-	-	В	Α	-	
HCM 95th %tile Q(veh)	-	-	0	0	-	

	•	→	—	•	/	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	*	^	↑ ₽		*	7	
Traffic Volume (veh/h)	71	701	1271	17	27	302	
Future Volume (veh/h)	71	701	1271	17	27	302	
Number	5	2	6	16	7	14	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			0.97	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1863	1863	
Adj Flow Rate, veh/h	76	746	1352	18	29	321	
Adj No. of Lanes	1	2	2	0	1	1	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	98	2424	2097	28	384	430	
Arrive On Green	0.06	0.69	0.59	0.59	0.22	0.22	
Sat Flow, veh/h	1774	3632	3668	48	1774	1583	
Grp Volume(v), veh/h	76	746	669	701	29	321	
Grp Sat Flow(s), veh/h/ln	1774	1770	1770	1852	1774	1583	
Q Serve(q s), s	3.4	6.8	20.4	20.4	1.1	15.0	
Cycle Q Clear(q c), s	3.4	6.8	20.4	20.4	1.1	15.0	
Prop In Lane	1.00	0.0	20.1	0.03	1.00	1.00	
Lane Grp Cap(c), veh/h	98	2424	1038	1087	384	430	
V/C Ratio(X)	0.77	0.31	0.64	0.65	0.08	0.75	
Avail Cap(c_a), veh/h	317	2744	1038	1087	636	656	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	37.8	5.1	11.1	11.2	25.3	27.0	
Incr Delay (d2), s/veh	4.8	0.1	1.4	1.3	0.0	1.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.8	3.3	10.2	10.7	0.5	12.6	
LnGrp Delay(d),s/veh	42.7	5.2	12.5	12.5	25.4	28.0	
LnGrp LOS	D	Α.2	В	В	C	C	
Approach Vol, veh/h		822	1370		350		
Approach Delay, s/veh		8.6	12.5		27.8		
Approach LOS		Α.	12.3 B		27.0		
Timer	1	2	3	4	5	6	7 8
Assigned Phs	- 1	2	3	4	5	6	, 0
Phs Duration (G+Y+Rc), s		60.1		21.1	8.0	52.1	
Change Period (Y+Rc), s		4.5		3.5	3.5	4.5	
Max Green Setting (Gmax), s		62.9		29.1	14.5	44.9	
Max Q Clear Time (q_c+l1), s		8.8		17.0	5.4	22.4	
Green Ext Time (p c), s		46.7		0.5	0.0	22.4	
Intersection Summary		10.7		0.0	0.0	££.1	
HCM 2010 Ctrl Delay			13.4				
HCM 2010 CIT Delay			13.4 B				
I IGIVI 2010 LUS			D				

Lane Configurations Traffic Volume (veh/h) 282 1059 839 29 27 117 Future Volume (veh/h) 282 1059 839 29 27 117 Number 5 2 6 16 7 14 Initial O (Ob), veh 0 0 0 0 0 0 0 Ped-Bike Adj (AppT) 1.00 20, 77 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h/h 1863 1863 1863 1900 1863 1863 Adj Flow Rate, veh/h 300 1127 893 31 29 124 Adj No of Lanes 1 2 2 0 1 1 Peak Hour Factor 0,94 0,94 0,94 0,94 0,94 0,94 Percent Heavy Veh, % 2 2 2 2 2 2 2 Cap, veh/h 335 2862 2000 69 155 437 Arrive On Green 0,19 0,81 0,57 0,59 0,09 0,09 Sat Flow, veh/h 1774 3632 3578 121 1774 1583 O Serve(g.s), s 12.7 6,9 11.3 11.3 1.2 4.7 Cycle O Clear(g.c), s 12.7 6,9 11.3 11.3 1.2 4.7 Prop In Lane 100 Lane Grp Cap(c), veh/h 335 2862 1016 1054 155 437 Arrive Congress Flow (S), veh/h 335 2862 1016 1054 155 437 Vic Ratio(X) 0,89 0.39 0.45 0.45 0.19 0.28 Avail Cap(c.a), veh/h 335 2862 1016 1054 155 437 Prop In Lane 100 Lane Grp Cap(c), veh/h 335 2862 1016 1054 155 437 Vic Ratio(X) 0,89 0.39 0.45 0.45 0.19 0.28 Avail Cap(c.a), veh/h 335 2903 1036 1075 673 900 Lane Grp Cap(c), veh/h 335 2903 1036 1075 673 900 HCM Platono Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0		*	→	+	•	/	4	
Lane Configurations	Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Traffic Volume (veh/h)	Lane Configurations	*	^	† 1>		*	7	
Future Volume (veh/h) Number 5 2 6 16 7 14 Initial O (Db), veh 0 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 Parking Bus, Adj Adj Sat Flow, veh/hin 1863 1863 1863 1863 1900 1863 1863 Adj Flow Rate, veh/h 300 1127 893 31 29 124 Adj No. of Lanes 1 2 2 0 1 1 Peack Hour Factor 0.94 0.94 0.94 0.94 0.94 Percent Heavy Veh, % 2 2 2 2 2 2 2 Cap, veh/h 335 2862 2000 69 155 437 Arrive On Green 0.19 0.81 0.57 0.57 0.99 0.09 Sat Flow, veh/h 1774 3632 3578 121 1774 1583 Grp Volume(v), veh/h 1774 3632 3578 121 1774 1583 Grp Sat Flow(S), veh/h/h 1774 1770 1770 1836 1774 1583 O Serve(g_s), s 12.7 6.9 11.3 11.3 1.2 4.7 Cycle O Clear(g_c), s 12.7 6.9 11.3 11.3 1.2 4.7 Cycle O Clear(g_c), s 12.7 6.9 11.3 11.3 1.2 4.7 Prop In Lane 1.00 Lane Grp Cap(c), veh/h 335 2862 1016 1054 155 437 Avail Cap(c_a), veh/h 335 2903 1036 1075 673 900 HCM Platoon Ratio Unstream Filter(f) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 336 320 32 1 9.4 9.4 32.5 21.8 Incr Delay (d2), s/veh 13.2 9.7 9.7 32.7 21.9 LnGrp Lolay (d3), s/veh 13.2 9.7 9.7 32.7 21.9 LnGrp Lolay (d3), s/veh 13.2 9.7 9.7 32.7 21.9 LnGrp Lolsy Abaysan A A C C Approach Vol, veh/h 1427 924 153 Approach Delay, s/veh 13.2 9.7 9.7 32.7 21.9 LnGrp Lolsy Abaysan A A C C Approach Delay, s/veh 13.2 9.7 9.7 32.7 21.9 LnGrp Lolsy Abaysan A Septimental 1 2 3 4 5 6 Approach Delay, s/veh 13.2 9.7 24.0 Approach Lols B A C Streen Ext Time (g_c-t), s 51.6 0.2 0.0 30.8 Intersection Summary HCM 2010 Ctrl Delay 12.5		282	1059	839	29	27	117	
Number 5 2 6 6 16 7 14 Initial O (Ob), veh 0 0 0 0 0 0 0 0 0 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, vehrhin 1863 1863 1863 1863 1900 1863 1863 Adj Flow Rate, vehrh 300 1127 893 31 29 124 Adj No. of Lanes 1 2 2 0 1 1 1 Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 Percrent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 Cap, vehrh 335 2862 2000 69 155 437 Arrive On Green 0.19 0.81 0.57 0.57 0.09 0.09 Sat Flow, vehrhin 1774 453 471 29 124 Grp Sat Flow(s), vehrhin 1774 1770 1770 1836 1774 1583 O Serve(g_s), s 12.7 6.9 11.3 11.3 1.2 4.7 O'Cycle O Clear(g_c), s 12.7 6.9 11.3 11.3 1.2 4.7 O'Cycle O Clear(g_c), vehrh 335 2862 1016 1054 155 437 ViC Ratio(X) 0.89 0.39 0.45 0.45 0.19 0.28 Avail Cap(c_a), vehrh 335 2862 1016 1054 155 437 ViC Ratio(X) 0.89 0.39 0.45 0.45 0.19 0.28 Avail Cap(c_a), vehrh 335 2903 1036 1075 673 900 HCM Platon Ratio 1.00 1.00 1.00 1.00 1.00 Upstream Filter(f) 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), siveh 30.3 2.1 9.4 9.4 32.5 21.8 Incr Delay (d), Siveh 30.3 2.1 9.4 9.4 32.5 21.8 Incr Delay (d), Siveh 30.3 2.1 9.4 9.4 32.5 21.8 Incr Delay (d), Siveh 31.3 2.2 9.7 24.0 Approach Delay, Siveh 1427 924 153 Approach Delay, Si		282	1059	839	29	27	117	
Initial Q (Ob), veh		5	2	6	16	7	14	
Ped-Bike Adj(A_pbT)								
Parking Bus, Adj		1.00			0.97	1.00	1.00	
Adj Sai Flow, veh/h/ln		1.00	1.00	1.00	1.00	1.00	1.00	
Adj Flow Rate, veh/h Adj No of Lanes 1 2 2 0 1 1 Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 Percent Heavy Veh, % 2 2 2 2 2 2 Cap, veh/h 335 2862 2000 69 155 437 Arrive On Green 0.19 0.81 0.57 0.57 0.09 0.09 Sat Flow, veh/h 1774 3632 3578 121 1774 1583 Grp Volume(v), veh/h 300 1127 453 471 29 124 Grp Sat Flow(s), veh/h/ln 1774 1770 1770 1836 1774 1583 O Serve(g_s), s 12.7 6.9 11.3 11.3 1.2 4.7 Cycle O Clear(g_c), s 12.7 6.9 11.3 11.3 1.2 4.7 Cycle O Clear(g_c), s 12.7 6.9 11.3 11.3 1.2 4.7 Cycle O Clear(g_c), s 12.7 6.9 11.3 11.3 1.2 4.7 Cycle O Clear(g_c), veh/h 335 2862 1016 1054 155 437 ViC Ratio(X) 0.89 0.39 0.45 0.45 0.19 0.28 Avail Cap(c_a), veh/h 335 2903 1036 1075 673 900 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.3 0.1 0.3 0.3 0.2 0.1 Initial O Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 Wile BackOfO(50%), veh/ln 8.4 3.3 5.5 5.7 0.6 4.5 LnGrp Delay (d2), s/veh 1427 924 153 Approach LOS B A C Timer 1 2 3 4 5 6 7 8 Assigned Phs 1427 924 153 Assigned Phs 1427 924 153 Assigned Phs 1427 924 155 Assigned Phs 1428 948 44.9 Assigned Phs 1427 924 15.3 Assigned Phs 1437 924 14.5 44.9 Assigned Phs 1447 924 15.3 Assigned Phs 1449 45.4 Assigned Phs 1457 924 14.5 44.9 Assigned Phs 1449 924 15.3 Assigned Phs 1457 924 14.5 44.9 Assigned Phs 1447 924 15.3 Assigned Phs 1449 924 15.3 Assigned Phs 1457 924 15.3 Assigned Phs 1457 925 12.5 Assigned Phs 1457 926 12.5 Assigned Phs 1457 926 12.5 Assigned Phs 1458		1863	1863	1863	1900	1863	1863	
Adj No. of Lanes								
Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 0.94 Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								
Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								
Cap, veh/h Arrive On Green O.19 O.81 O.57 O.57 O.57 O.90 O.09 O.09 Sat Flow, veh/h 1774 3632 3578 121 1774 1583 Grp Volume(v), veh/h 300 1127 453 471 29 124 Grp Sat Flow(s), veh/h/ln 1774 1770 1770 1836 1774 1583 O Serve(g_s), s 12.7 6.9 11.3 11.3 1.2 4.7 Cycle O Clear(g_c), s 12.7 6.9 11.3 11.3 1.2 4.7 Prop In Lane 1.00 0.07 1.00 1.00 1.00 1.00 1.00 1.00								
Arrive On Green 0.19 0.81 0.57 0.57 0.09 0.09 Sal Flow, veh/h 1774 3632 3578 121 1774 1583 Grp Volume(v), veh/h 300 1127 453 471 29 124 Grp Sal Flow(s), veh/h/ln 1774 1770 1770 1836 1774 1583 Q Serve(g_s), s 12.7 6.9 11.3 11.3 1.2 4.7 Cycle Q Clear(g_c), s 12.7 6.9 11.3 11.3 1.2 4.7 Prop In Lane 1.00 Lane Grp Cap(c), veh/h 335 2862 1016 1054 155 437 V/C Ratio(X) 0.89 0.39 0.45 0.45 0.19 0.28 Avail Cap(c_a), veh/h 335 2903 1036 1075 673 900 HCM Platon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(f) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 30.3 2.1 9.4 9.4 32.5 21.8 Incr Delay (d2), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Sile BackOfO(50%), veh/ln 8.4 3.3 5.5 5.7 0.6 4.5 LnGrp Delay(d), s/veh 54.6 2.2 9.7 9.7 32.7 21.9 LnGrp LOS D A A A C C Approach Vol, veh/h 1427 924 153 Approach LOS B A C C Timer 1 2 3 4 5 6 7 8 Assigned Phs Phs Duration (G+Y+Rc), s 66.5 10.2 18.0 48.5 Change Period (Y+Rc), s 4.5 3.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max Q Clear Time (g_c+1), s 8.9 6.7 14.7 13.3 Green Ext Time (g_c-t), s 51.6 0.2 0.0 30.8 Intersection Summary HCM 2010 Ctrl Delay								
Sat Flow, veh/h Grp Volume(v), veh/h 300 1127 453 471 29 124 Grp Sat Flow(s), veh/h/ln 1774 1770 1770 1770 17836 1774 1583 O Serve(g.S), s 12.7 6.9 11.3 11.3 1.2 4.7 Cycle O Clear(g.c), s 12.7 6.9 11.3 11.3 1.2 4.7 Cycle O Clear(g.c), s 12.7 6.9 11.3 11.3 1.2 4.7 Cycle O Clear(g.c), s 12.7 6.9 11.3 11.3 1.2 4.7 Cycle O Clear(g.c), s 12.7 6.9 11.3 11.3 1.2 4.7 Cycle O Clear(g.c), veh/h 335 2862 1016 1054 155 437 V/C Ratio(X) 0.89 0.39 0.45 0.45 0.19 0.28 Avail Cap(c.a), veh/h 335 2903 1036 1075 673 900 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0								
Grp Volume(v), veh/h Grp Sat Flow(s), veh/h/ln 1774 1770 1770 1770 1770 1770 1770 1771 1770 1771 1770 1771 1770 1771 1770 1771 1770 1771 1770 1771 1770 1771 1770 1771 1770 1771								
Grp Sat Flow(s),veh/h/ln								
Q Serve(g_s), s 12.7 6.9 11.3 11.3 1.2 4.7 Cycle Q Clear(g_c), s 12.7 6.9 11.3 11.3 1.2 4.7 Prop In Lane 1.00 0.07 1.00 1.00 Lane Grp Cap(c), veh/h 335 2862 1016 1054 155 437 V/C Ratio(X) 0.89 0.39 0.45 0.45 0.19 0.28 Avail Cap(c_a), veh/h 335 2903 1036 1075 673 900 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(f) 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(f) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), siveh 30.3 2.1 9.4 9.4 32.5 21.8 Inter Delay (d2), siveh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%), veh/ln 8.4 3.3 5.5 5.7 0.6 4.5 LnGrp Delay(d), siveh 54.6 2.2 9.7 9.7 32.7 21.9 LnGrp LOS D A A A C C Approach Vol, veh/h 1427 924 153 Approach Delay, siveh 13.2 9.7 24.0 Approach LOS B A C Timer 1 2 3 4 5 6 7 8 Assigned Phs C Phs Duration (G+Y+Rc), s 66.5 10.2 18.0 48.5 Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 8.9 6.7 14.7 13.3 Green Ext Time (g_c+1), s 8.9 6.7 14.7 13.3 Intersection Summary HCM 2010 Ctrl Delay								
Cycle Q Clear(g_c), s 12.7 6.9 11.3 11.3 1.2 4.7 Prop In Lane 1.00 0.07 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 335 2862 1016 1054 155 437 V/C Ratio(X) 0.89 0.39 0.45 0.45 0.19 0.28 Avall Cap(C_a), veh/h 335 2903 1036 1075 673 900 HCM Platoon Ratio 1.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Prop In Lane 1.00 0.07 1.00 1.00 Lane Grp Cap(c), veh/h 335 2862 1016 1054 155 437 V/C Ratio(X) 0.89 0.39 0.45 0.19 0.28 Avail Cap(c_a), veh/h 335 2903 1036 1075 673 900 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.3 0.1 0.3 0.3 0.2 0.1 1.00 Incr Delay (d2), s/veh 24.3 0.1 0.3 0.3 0.2 0.1 1.00 0.0 0.0 0.0 0.0								
Lane Grp Cap(c), veh/h V/C Ratio(X) 0.89 0.89 0.45 0.45 0.45 0.75 0.73 0.89 0.89 0.89 0.89 0.45 0.45 0.45 0.75 0.73 900 HCM Platoon Ratio 1.00			0.7	1110				
\(\text{V/C Ratio(X)} \) 0.89 \ 0.39 \ 0.45 \ 0.45 \ 0.19 \ 0.28 \\ Avail Cap(c_a), veh/h \ 335 \ 2903 \ 1036 \ 1075 \ 673 \ 900 \\ HCM Platon Ratio \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \\ Upstream Filter(f) \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \\ Upstream Filter(f) \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \\ Uniform Delay (d), s/veh \ 30.3 \ 2.1 \ 9.4 \ 9.4 \ 32.5 \ 21.8 \\ Inter Delay (d2), s/veh \ 24.3 \ 0.1 \ 0.3 \ 0.3 \ 0.2 \ 0.1 \\ Initial Q Delay(d3), s/veh \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \\ %ile BackOfQ(50%), veh/ln \ 8.4 \ 3.3 \ 5.5 \ 5.7 \ 0.6 \ 4.5 \\ LnGrp Delay(d), s/veh \ 54.6 \ 2.2 \ 9.7 \ 9.7 \ 32.7 \ 21.9 \\ LnGrp LOS \ D A A A C C C \\ Approach Vol, veh/h \ 1427 \ 924 \ 153 \\ Approach Vol, veh/h \ 13.2 \ 9.7 \ 24.0 \\ Approach Delay, s/veh \ 13.2 \ 9.7 \ 24.0 \\ Approach LOS \ B A C C \\ Timer \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ Assigned Phs \ Ps Duration (G+Y+Rc), s \ 66.5 \ 10.2 \ 18.0 \ 48.5 \\ Change Period (Y+Rc), s \ 4.5 \ 3.5 \ 3.5 \ 4.5 \\ Max Green Setting (Gmax), s \ 8.9 \ 6.7 \ 14.7 \ 13.3 \\ Green Ext Time (g_c-t), s \ 51.6 \ 0.2 \ 0.0 \ 30.8 \\ Intersection Summary HCM 2010 Ctrl Delay		335	2862	1016		155	437	
Avail Cap(c_a), veh/h Avail Cap(c_a), veh/h HCM Platoon Ratio 1.00 1								
HCM Platoon Ratio								
Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0								
Uniform Delay (d), s/veh 30.3 2.1 9.4 9.4 32.5 21.8 Incr Delay (d2), s/veh 24.3 0.1 0.3 0.3 0.2 0.1 Inlitial Q Delay (d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Incr Delay (d2), s/veh								
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %lie BackOfQ(50%),vehr/ln 8.4 3.3 5.5 5.7 0.6 4.5 LnGrp Delay(d),s/veh 54.6 2.2 9.7 9.7 32.7 21.9 LnGrp Delay(d),s/veh 11.2 92.4 15.3 Approach Delay, s/veh 13.2 9.7 24.0 Approach Delay, s/veh 13.2 9.7 24.0 Approach LOS B A C C Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 5 6 7 8 Assigned Phs 2 4 5 6 7 8 Assigned Phs 1 2 18.0 48.5 Change Period (Y+Rc), s 66.5 10.2 18.0 48.5 Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max Q Clear Time (g_c+1), s 8.9 6.7 14.7 13.3 Green Ext Time (g_c-c), s 51.6 0.2 0.0 30.8 Intersection Summary HCM 2010 Ctrl Delay 12.5								
%ile BackOfÓ(50%),veh/ln 8.4 3.3 5.5 5.7 0.6 4.5 LnGrp Delay(d),s/veh 54.6 2.2 9.7 9.7 32.7 21.9 LnGrp LOS D A A A C C C Approach Vol, veh/h 1427 924 153 Approach LOS B A C C Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 5 6 Phs Duration (G+Y+Rc), s 66.5 10.2 18.0 48.5 Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max Q Clear Time (g_c+1), s 8.9 6.7 14.7 13.3 Green Ext Time (g_c-c), s 51.6 0.2 0.0 30.8						0.0		
LnGrp Delay(d), s/veh 54.6 2.2 9.7 9.7 32.7 21.9 LnGrp Delay(d), s/veh D A A A C C C Approach Vol, veh/h 1427 924 153 Approach Delay, s/veh 13.2 9.7 24.0 Approach LOS B A C C T Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 5 6 A Sasigned Phs Duration (G+Y+Rc), s 66.5 10.2 18.0 48.5 Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max Q Clear Time (g_c+l), s 8.9 6.7 14.7 13.3 Green Ext Time (g_c+l), s 51.6 0.2 0.0 30.8 Intersection Summary								
LnGrp LOS D A A A C C Approach Vol, veh/h 1427 924 153 Approach Delay, s/veh 13.2 9.7 24.0 Approach LOS B A C Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 5 6 Phs Duration (G+Y+Rc), s 66.5 10.2 18.0 48.5 Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Settling (Gmax), s 62.9 29.1 14.5 44.9 Max Q Clear Time (g_c+I1), s 8.9 6.7 14.7 13.3 Green Ext Time (p_c,c), s 51.6 0.2 0.0 30.8 Intersection Summary HCM 2010 Ctrl Delay 12.5		54.6	2.2		9.7	32.7		
Approach Vol, veh/h								
Approach Delay, siveh Approach LOS 13.2 9.7 24.0 Approach LOS B A C Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 5 6 7 8 Phs Duration (G+Y+Rc), s 66.5 10.2 18.0 48.5 Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max O Clear Time (g_c+l1), s 8.9 6.7 14.7 13.3 Green Ext Time (p_c), s 51.6 0.2 0.0 30.8 Intersection Summary HCM 2010 Ctrl Delay 12.5								
Approach LOS B A C Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 5 6 Phs Duration (G+Y+Rc), s 66.5 10.2 18.0 48.5 Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max Q Clear Time (g_c+IT), s 8.9 6.7 14.7 13.3 Green Ext Time (g_c+IT), s 8.9 6.7 14.7 13.3 Intersection Summary HCM 2010 Ctrl Delay 12.5								
Tilmer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 5 6 Phs Duration (G+Y+Rc), s 66.5 10.2 18.0 48.5 Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max Q Clear Time (g_c+I1), s 8.9 6.7 14.7 13.3 Green Ext Time (p_c), s 51.6 0.2 0.0 30.8 Intersection Summary HCM 2010 Ctrl Delay 12.5								
Assigned Phs 2 4 5 6 Phs Duration (G+Y+Rc), s 66.5 10.2 18.0 48.5 Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max O Clear Time (g_c+I1), s 8.9 6.7 14.7 13.3 Green Ext Time (p_c), s 51.6 0.2 0.0 30.8 Intersection Summary HCM 2010 Ctrl Delay 12.5	••	1	2	3	4	5	6	7 8
Phs Duration (G+Y+Rc), s 66.5 10.2 18.0 48.5 Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max O Clear Time (g_c+II), s 8.9 6.7 14.7 13.3 Green Ext Time (p_c), s 51.6 0.2 0.0 30.8 Intersection Summary HCM 2010 Ctrl Delay 12.5								-
Change Period (Y+Rc), s 4.5 3.5 3.5 4.5 Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max Q Clear Time (g_c+I1), s 8.9 6.7 14.7 13.3 Green Ext Time (p_c), s 51.6 0.2 0.0 30.8 Intersection Summary HCM 2010 Ctrl Delay 12.5								
Max Green Setting (Gmax), s 62.9 29.1 14.5 44.9 Max Q Clear Time (g_c+l1), s 8.9 6.7 14.7 13.3 Green Ext Time (g_c-c), s 51.6 0.2 0.0 30.8 Intersection Summary HCM 2010 Ctrl Delay 12.5								
Max Q Clear Time (g_c+l1), s 8.9 6.7 14.7 13.3 Green Ext Time (g_c), s 51.6 0.2 0.0 30.8 Intersection Summary HCM 2010 Ctrl Delay 12.5								
Green Ext Time (p_c), s 51.6 0.2 0.0 30.8 Intersection Summary HCM 2010 Ctrl Delay 12.5								
HCM 2010 Ctrl Delay 12.5								
HCM 2010 Ctrl Delay 12.5	Intersection Summary							
				12.5				
HOW ZOTO EOS	HCM 2010 LOS			В				

AM Peak Hour - Future Conditions Emerald Isle Traffic Impact Study

W-Trans

Page 2

PM Peak Hour - Future Conditions Emerald Isle Traffic Impact Study

Intersection								
Int Delay, s/veh	0.3							
Movement	WBL	WBR		NBT	NBR	SBL	SBT	
Lane Configurations	W			1→		7	•	
Traffic Vol, veh/h	9	1		54	7	1	276	
Future Vol, veh/h	9	1		54	7	1	276	
Conflicting Peds, #/hr	0	0		0	0	0	0	
Sign Control	Stop	Stop		Free	Free	Free	Free	
RT Channelized		None		-	None	-	None	
Storage Length	0	-		-	-	50	-	
Veh in Median Storage, #		-		0	-	-	0	
Grade, %	0	-		0	-	-	0	
Peak Hour Factor	79	79		79	79	79	79	
Heavy Vehicles, %	2	2		2	2	2	2	
Mvmt Flow	11	1		68	9	1	349	
Major/Minor	Minor1			Major1		Major2		
Conflicting Flow All	425	73		0	0	77	0	
Stage 1	73	-		-	-	-		
Stage 2	352	-		-	-	-		
Critical Hdwy	6.42	6.22		-	-	4.12	-	
Critical Hdwy Stg 1	5.42	-		-	-	-		
Critical Hdwy Stg 2	5.42				-		-	
Follow-up Hdwy	3.518	3.318		-	-	2.218		
Pot Cap-1 Maneuver	586	989		-	-	1522		
Stage 1	950	-		-	-	-		
Stage 2	712			-		-		
Platoon blocked, %					-			
Mov Cap-1 Maneuver	586	989			-	1522	-	
Mov Cap-2 Maneuver	586			-		-		
Stage 1	950			-		-		
Stage 2	712				-			
Ÿ								
Approach	WB			NB		SB		
HCM Control Delay, s	11			0		0		
HCM LOS	B			U		U		
TIOW EOS	ь							
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT				
	INDI	- 611	1522	301				
Capacity (veh/h)			0.001					
HCM Control Doloy (a)		- 0.021	7.4	-				
HCM Long LOS		- 11 - B		-				
HCM Lane LOS		- B	A	-				

Intersection							
	0.3						
Movement	WBL	WBR		NBT	NBR	SBL	SBT
Lane Configurations	¥			1>		7	†
Traffic Vol, veh/h	10	1		274	9	1	81
Future Vol, veh/h	10	1		274	9	1	81
Conflicting Peds, #/hr	0	0		0	0	0	0
Sign Control	Stop	Stop		Free	Free	Free	Free
RT Channelized		None		-	None	-	None
Storage Length	0	-		-	-	50	-
Veh in Median Storage, #	0			0	-	-	0
Grade, %	0	-		0	-	-	0
Peak Hour Factor	89	89		89	89	89	89
Heavy Vehicles, %	2	2		2	2	2	2
Mvmt Flow	11	1		308	10	1	91
Major/Minor	Minor1			Major1		Major2	
Conflicting Flow All	406	313		0	0	318	0
Stage 1	313	-		-	-	310	-
Stage 2	93						
Critical Hdwy	6.42	6.22				4.12	
Critical Hdwy Stg 1	5.42	0.22				7.12	
Critical Hdwy Stg 2	5.42						
Follow-up Hdwy	3.518	3.318				2.218	
Pot Cap-1 Maneuver	601	727				1242	
Stage 1	741	121		-		1242	
Stage 2	931						
Platoon blocked. %	931	-				-	
Mov Cap-1 Maneuver	601	727			-	1242	
	601	121				1242	
Mov Cap-2 Maneuver	741				-		
Stage 1				-	-		-
Stage 2	930					-	-
Approach	WB			NB		SB	
HCM Control Delay, s	11			0		0.1	
HCM LOS	В						
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT			
Capacity (veh/h)	-	- 611	1242				
HCM Lane V/C Ratio			0.001	-			
HCM Control Delay (s)		- 11	7.9				
HCM Lane LOS		- B	Λ. Α	-			
I ICIVI Latte LU3		- D	А				

AM Peak Hour - Future plus Project Emerald Isle Traffic Impact Study

HCM 95th %tile Q(veh) - - 0.1 0 -

Synchro 9 Report

PM Peak Hour - Future plus Project Emerald Isle Traffic Impact Study

HCM 95th %tile Q(veh) - - 0.1 0 -

		→	+	4	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	^	↑ ↑		ች	7
Traffic Volume (veh/h)	75	703	1271	19	28	305
Future Volume (veh/h)	75	703	1271	19	28	305
Number	5	2	6	16	7	14
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A pbT)	1.00			0.97	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1863	1863
Adj Flow Rate, veh/h	80	748	1352	20	30	324
Adj No. of Lanes	1	2	2	0	1	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	103	2422	2081	31	386	436
Arrive On Green	0.06	0.68	0.58	0.58	0.22	0.22
Sat Flow, veh/h	1774	3632	3661	53	1774	1583
Grp Volume(v), veh/h	80	748	670	702	30	324
			1770	1851	1774	1583
Grp Sat Flow(s), veh/h/ln	1774 3.6	1770 6.9	20.7	20.7	1.774	15.2
Q Serve(g_s), s						
Cycle Q Clear(g_c), s	3.6	6.9	20.7	20.7	1.1	15.2
Prop In Lane	1.00	2422	1000	0.03	1.00	1.00
Lane Grp Cap(c), veh/h	103	2422	1032	1080	386	436
V/C Ratio(X)	0.77	0.31	0.65	0.65	0.08	0.74
Avail Cap(c_a), veh/h	316	2732	1032	1080	634	658
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	37.8	5.1	11.4	11.4	25.4	26.9
Incr Delay (d2), s/veh	4.6	0.1	1.4	1.4	0.0	0.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.9	3.3	10.5	10.9	0.5	12.7
LnGrp Delay(d),s/veh	42.4	5.2	12.8	12.8	25.4	27.8
LnGrp LOS	D	Α	В	В	С	С
Approach Vol, veh/h		828	1372		354	
Approach Delay, s/veh		8.8	12.8		27.6	
Approach LOS		Α	В		С	
Timer	1	2	3	4	5	6
Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		60.3		21.2	8.2	52.0
Change Period (Y+Rc), s		4.5		3.5	3.5	4.5
Max Green Setting (Gmax), s		62.9		29.1	14.5	44.9
Max Q Clear Time (q c+l1), s		8.9		17.2	5.6	22.7
Green Ext Time (p_c), s		46.9		0.5	0.0	21.8
Intersection Summary						
HCM 2010 Ctrl Delay			13.6			
HCM 2010 CIT Delay			13.0 B			
HCIVI 2010 LUS			В			

	•	→	-	•	~	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	N,	† †	† p	WDIC	'n	7	
Traffic Volume (veh/h)	287	1059	839	31	29	123	
Future Volume (veh/h)	287	1059	839	31	29	123	
Number	5	2	6	16	7	14	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A pbT)	1.00			0.96	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1863	1863	
Adj Flow Rate, veh/h	305	1127	893	33	31	131	
Adj No. of Lanes	1	2	2	0	1	1	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Percent Heavy Veh, %	0.94	0.94	0.94	0.94	0.94	0.94	
Cap, veh/h	334	2849	1986	73	162	442	
Cap, ven/n Arrive On Green	0.19	0.80	0.57	0.57	0.09	0.09	
Sat Flow, veh/h	1774	3632	3569	128	1774	1583	
Grp Volume(v), veh/h	305	1127	455	471	31	131	
Grp Sat Flow(s),veh/h/ln	1774	1770	1770	1835	1774	1583	
Q Serve(g_s), s	13.0	7.0	11.4	11.4	1.2	5.0	
Cycle Q Clear(g_c), s	13.0	7.0	11.4	11.4	1.2	5.0	
Prop In Lane	1.00			0.07	1.00	1.00	
Lane Grp Cap(c), veh/h	334	2849	1011	1048	162	442	
V/C Ratio(X)	0.91	0.40	0.45	0.45	0.19	0.30	
Avail Cap(c_a), veh/h	334	2889	1031	1069	670	896	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	30.7	2.2	9.5	9.5	32.4	21.8	
Incr Delay (d2), s/veh	27.9	0.1	0.3	0.3	0.2	0.1	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	8.9	3.3	5.6	5.8	0.6	4.8	
LnGrp Delay(d),s/veh	58.6	2.2	9.8	9.8	32.6	21.9	
LnGrp LOS	E	Α	Α	Α	С	С	
Approach Vol, veh/h		1432	926		162		
Approach Delay, s/veh		14.2	9.8		24.0		
Approach LOS		В	А		С		
''	1					4	7 8
Timer	- 1	2	3	4	5	6	7 8
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc), s		66.5		10.5	18.0	48.5	
Change Period (Y+Rc), s		4.5		3.5	3.5	4.5	
Max Green Setting (Gmax), s		62.9		29.1	14.5	44.9	
Max Q Clear Time (g_c+11), s		9.0		7.0	15.0	13.4	
Green Ext Time (p_c), s		51.5		0.2	0.0	30.6	
Intersection Summary							
HCM 2010 Ctrl Delay			13.2				
HCM 2010 LOS			В				

AM Peak Hour - Future plus Project Emerald Isle Traffic Impact Study

Synchro 9 Report

PM Peak Hour - Future plus Project Emerald Isle Traffic Impact Study