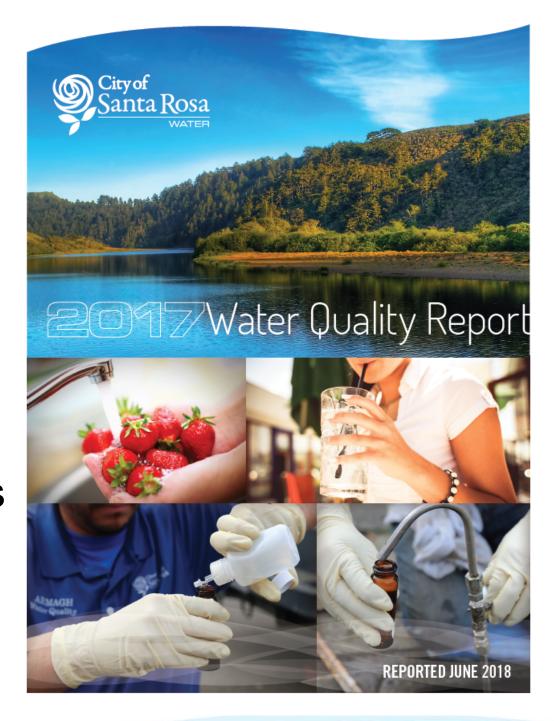
2017 Drinking Water Quality Report Update

August 2, 2018 BPU Meeting

Compliance with the Safe Drinking Water Act (SDWA)

Federal Rules – Public drinking water quality:

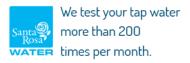
- Total Coliform Rule
- Disinfectants/Disinfection By-Products Rule
- Lead and Copper Rule
- Groundwater Rule

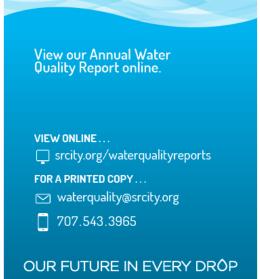

State Regulations - Cross Connection Control

Annual Water Quality Report provides:

- Water system information
- Testing Information
- Definitions
- How to Read Section
- Water Quality Results
- Fire Update
- Exceedances

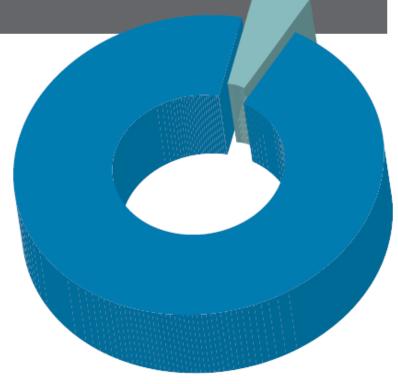
Water Quality Report Distribution


- Press Democrat Ads
- Bill Insert
- Email and E-newsletter
- Social Media
- Mailings
- Printed copies

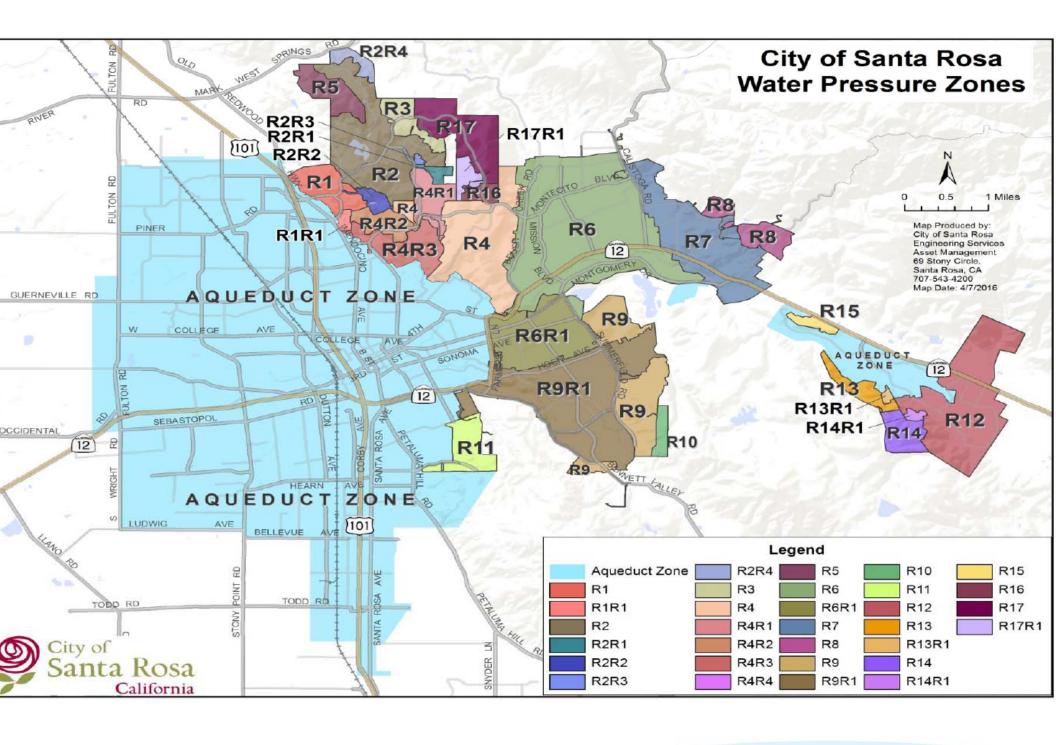


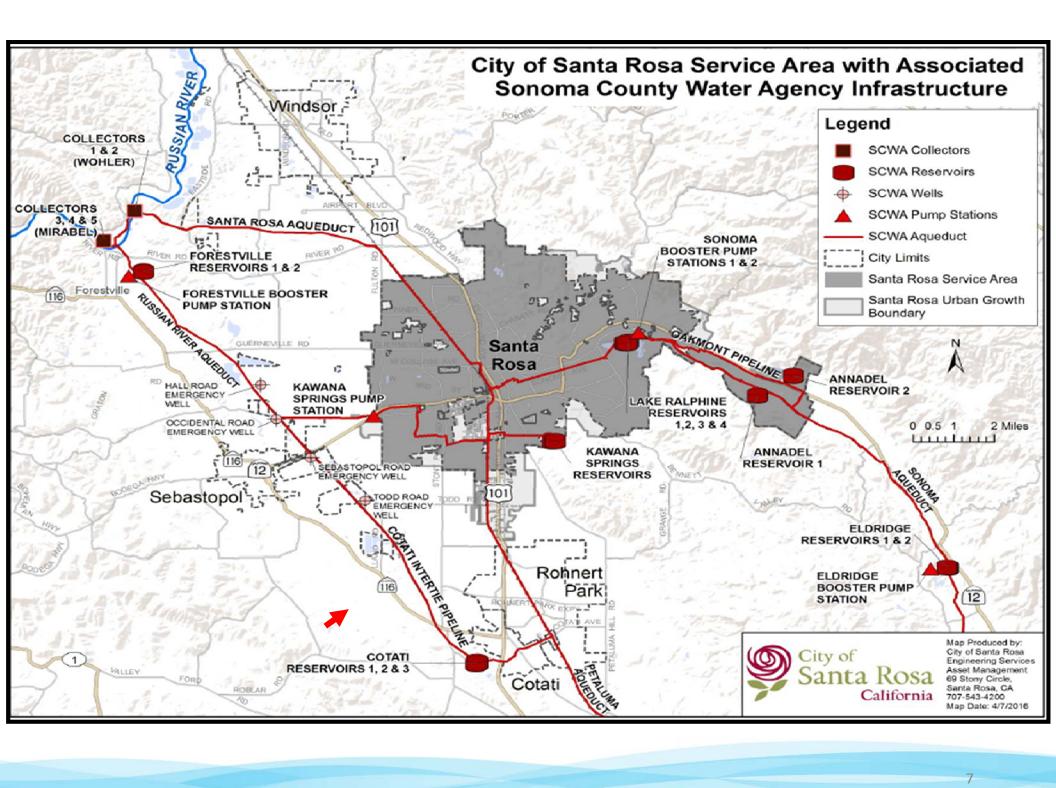
OUR FUTURE IN EVERY DROP

Quality matters.



Water Supply Portfolio


As a Santa Rosa Water customer you are connected to Santa Rosa's public water system. The water supplied to homes and businesses is a combination of surface water from the Russian River and local groundwater.


95% Water Agency (Russian river)

5% Groundwater

Sample Stations

Farmers Lane Well -Water **Treatment** Plant Samples

Water Quality Sampling

- Water Agency Water Quality Report
 - Russian River Caissons
 - Groundwater Wells

Sonoma County Water Agency - Caissons 1 thru 6 - 2017 Water Quality Report

					.,					
					Caisson 1	Caisson 2	Caisson 3	Caisson 4	Caisson 5	Caisson 6
CLARITY OF WATER FROM			S	ample						
GROUNDWATER SOURCES	MCL	Units	Fre	equency	average	average	average	average	average	average
(f)	5 (3)				0.044	0.047	0.045	0.051	0.055	0.030
Turbidity (1)	5 157	NTU	continuous		range	range	range	range	range	range
					(0.024 - 2.0)	(0.030 - 2.0)	(0.032 - 2.0)	(0.033 - 2.0)	(0.042 - 2.0)	(0.025 - 2.0
		MCL		U	Inits	# Samples	Distr	2017		
MICROBIOLOGICAL - Coliform Bacteria	< 2 posi	< 2 positive samples per month			ms/100ml	522		[0] positiv	e samples	
DISINFECTANT - Total Chlorine Residual	>	> 95% per month		detectak	ole residual	616	Detect	able residual in	100% of sample	s taken
Total Trihalomethanes (2) - Tank Samples		0.080		n	ng/L	72	average = 0.0	104 mg/L rang	je = (0.0056 mg/	L - 0.0172 mg/L
VOLATILE ORGANIC COMPOUNDS	Units	STATE	DLR	PHG	Caisson 1	Caisson 2	Caisson 3	Caisson 4	Caisson 5	Caisson 6
Section 64444 - Table A		MCL		{ MCLG }	29-Aug-17	29-Aug-17	28-Aug-17	28-Aug-17	28-Aug-17	29-Aug-17
Benzene	mg/L	0.001	0.0005	0.00015	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	mg/L	0.0005	0.0005	0.0001	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene (o-DCB)	mg/L	0.6	0.0005	0.6	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene (p-DCB)	mg/L	0.005	0.0005	0.006	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane (1,1-DCA)	mg/L	0.005	0.0005	0.003	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane (1,2-DCA)	mg/L	0.0005	0.0005	0.0004	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene (1,1-DCE)	mg/L	0.006	0.0005	0.01	ND	ND	ND	ND	ND	ND
cis-1,2-Dichlorethylene (c-1,2-DCE)	mg/L	0.006	0.0005	0.1	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene (t-1,2-DCE)	mg/L	0.01	0.0005	0.06	ND	ND	ND	ND	ND	ND
Dichloromethane (Methylene Chloride)	mg/L	0.005	0.0005	0.004	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	mg/L	0.005	0.0005	0.0005	ND	ND	ND	ND	ND	ND
1,3-Dichloropropene	mg/L	0.0005	0.0005	0.0002	ND	ND	ND	ND	ND	ND
Ethylbenzene	mg/L	0.3	0.0005	0.3	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE) (4)	mg/L	0.013	0.003	0.013	ND	ND	ND	ND	ND	ND
Monochlorobenzene (Chlorobenzene)	mg/L	0.07	0.0005	0.07	ND	ND	ND	ND	ND	ND
Styrene	mg/L	0.1	0.0005	0.0005	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	mg/L	0.001	0.0005	0.0001	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	mg/L	0.005	0.0005	0.00006	ND	ND	ND	ND	ND	ND
Toluene	mg/L	0.15	0.0005	0.15	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	mg/L	0.005	0.0005	0.005	ND	ND	ND	ND	ND	ND

0.0005

0.0005

0.0005

0.005

0.01

0.0005

0.0005

1.0

0.0003

0.0017

1.3

4

0.00005

ND

1,1,1-Trichloroethane (1,1,1-TCA)

1,1,2-Trichloroethane (1,1,2-TCA)

Trichlorofluoromethane (Freon 11)

1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)

Trichloroethylene (TCE)

Vinyl Chloride (VC)

Xylenes (m,p, & o)

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

0.2

0.005

0.005

0.15

1.2

0.0005

1.75

⁽¹⁾ Turbidity: Annual average is the mean of the monthly average values, weighted by hours of pump operation each month.

Range refers to the minimum and maximum Turbidity readings recorded by the online Turbidimeters at each site.

⁽²⁾ Total Trihalomethanes: 40 CFR Section 141.12 - Is the sum of the concentrations of Bromodichloromethane, Dibromochloromethane, Bromoform, and Chloroform.

⁽³⁾ MCL: Secondary Standard.

⁽⁴⁾ Methyl tert-butyl ether (MTBE) is listed in both the Primary (Organic Chemicals - VOCs) and Secondary standards.

Sonoma County Water Agency - Caissons 1 thru 6 - 2017 Water Quality Report

SECONDARY STANDARDS	Units	Secondary	DLR	PHG	Caisson 1	Caisson 2	Caisson 3	Caisson 4	Caisson 5	Caisson 6
Section 64449 - Table A		MCL		{ MCLG }	29-Aug-17	29-Aug-17	28-Aug-17	28-Aug-17	28-Aug-17	29-Aug-17
Aluminum (6)	μg/L	200	50	600	< 50	< 50	< 50	< 50	< 50	< 50
Color	Color Units	15			< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Copper	μg/L	1300 (7)	50	300	< 50	< 50	< 50	< 50	< 50	< 50
Foaming Agents (MBAS)	mg/L	0.5			< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Iron	μg/L	300	100		< 100	< 100	< 100	< 100	< 100	< 100
Manganese	μg/L	50	20		< 20	< 20	< 20	< 20	< 20	< 20
Methyl tert-butyl ether (MTBE) (4)	mg/L	0.005	0.003	0.013	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Odor - Threshold	TON	3	1		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Silver	μg/L	100	10		< 10	< 10	< 10	< 10	< 10	< 10
Thiobencarb (5)	mg/L	0.001	0.001	0.042	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Turbidity	NTU	5			See page 1	See page 1	See page 1	See page 1	See page 1	See page 1
Zinc	μg/L	5000	50		< 50	< 50	< 50	< 50	< 50	< 50
SECONDARY STANDARDS	Units	Recommended	DLR	Upper	Caisson 1	Caisson 2	Caisson 3	Caisson 4	Caisson 5	Caisson 6
Section 64449 - Table B	1111	MCL		MCL	29-Aug-17	29-Aug-17	28-Aug-17	28-Aug-17	28-Aug-17	29-Aug-17
Total Dissolved Solids	mg/L	500		1000	140	140	140	140	160	150
Specific Conductance	μS/cm	900		1600	230	250	240	240	280	240
Chloride	mg/L	250		500	4.7	4.7	5.5	5.4	5.4	4.8
Sulfate	mg/L	250	0.5	500	11	11	12	12	16	13
ADDITIONAL CONSTITUENTS ANALYZED	Units	STATE	DLR	PHG	Caisson 1	Caisson 2	Caisson 3	Caisson 4	Caisson 5	Caisson 6
		MCL		{ MCLG }	29-Aug-17	29-Aug-17	28-Aug-17	28-Aug-17	28-Aug-17	31-Aug-16
рН	pH				7.40	7.36	7.14	7.32	7.18	7.15
Total Hardness as CaCO ₃	mg/L				103	99	107	109	132	115
Calcium	mg/L				21	20	21	21	25	23
Magnesium	mg/L				12	12	14	14	17	14
Sodium	mg/L				7.5	7.7	8.7	8.9	8.3	7.8
Potassium	mg/L				1.1	1.0	1.3	1.3	1.1	1.0
Total Alkalinity as CaCO ₃	mg/L				100	100	110	100	120	110
Hydroxide	mg/L				< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Carbonate	mg/L				< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bicarbonate	mg/L				120	120	130	130	150	130
Agressiveness Index					11.02	11.03	10.86	10.96	10.92	10.91
Lead	μg/L	15 (7)	5	0.2	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Radon 222 + Counting Error	pCi/L		100		87.6 ± 21.4	130 ± 23.4	129 ± 16.0	138 ± 17.5	163 ± 18.0	153 ± 23.7
N-Nitrosodimethylamine (NDMA)	µg/L	0.01 (8)		0.003	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

⁽⁴⁾ Methyl tert-butyl ether (MTBE) is listed in both the Primary (Organic Chemicals - VOCs) and Secondary standards.

⁽⁵⁾ Thiobencarb is listed in both the Primary (Organic Chemicals - SOCs) and Secondary standards.

⁽⁶⁾ Aluminum is listed in both the Primary (Inorganic Chemicals) and Secondary standards.

⁽⁷⁾ Action Level under the Lead and Copper Rule.

⁽⁸⁾ Notification Level

2017 Water Quality Sampling Results

TABLE OF DETECTED CHEMICALS OR CONSTITUENTS IN 2017

						SANTA	ROSA ²	
Substance (Parameter)	Public Health Goal (MCLG)	DLR	Maximum Contaminant Level	Range Detected	Reporting Value	Range Detected	Reporting Value	Major Source in Drinking Water
PRIMARY STANDARDS Detected F	legulated Contaminan	ts with Primary	MCLs or MRDLs					
INORGANIC CONTAMINANTS								
Fluoride (ppm) ³	1	0.1	4.0	ИD	ND	0.19-0.22	0.2	Erosion of natural deposits
Nitrate (as N ppm)	1	0.4	1	ND	ND	ND	ND	Runoff/leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
D ISTRIBUTION SYSTEM DETECTIONS 2	117							
MICROBIOLOGICAL CONTAMINANTS								
Total Coliform Bacteria from Santa Rosa Distribution System	0		5% of monthly samples	NA	NA	0%-0.77%	0%	Naturally present in the environment
Total Trihalomethanes (ppb)	NS		80	NA	NA	17.3-25.6	25.63	By-product of drinking water chlorination
Haloacetic Acids (ppb)	NS		60	NA	NA	5.6-8.3	6.85	By-product of drinking water chlorination
Disinfectant-Free Chlorine (Cl ₂) Residual (ppm)	MRDLG as Cl ₂ 4.0		MRDLG as Cl ₂ 4.0	NA	NA	0.02-1.6	0.78	Disinfectant to control microbes
pH (units) prior to pH adjustment	NS		NS	NA	NA	7-8.5	7.78	Sodium Hydroxide addition
Benzene (ppb) ⁴ see Restaring Fire Water System in Fountaingrove article on next page	0.15	.5	1					Discharge from plastics, dyes and nylon factories; leaching from gas storage tanks and landfills

SECONDARY STANDARDS Aesthetic Standards Established by the State Water Resources Control Board's Division of Drinking Water

REGULATED CONTAMINANTS WITH SECONDARY MCLS	There are no a	dverse health effec	ts from e	ceedin	g the seco	ndary (a	<mark>esthetic) s</mark>	tandards.			
Threshold Odor Number (TON) at 60°C	NS	1	3		ND		ND	ا	ND	ND	Naturally occurring organic materials
Chloride (ppm)	NS		500		5.5-4.7		5.0	17.9	9-24.3	21.1	Run-off/leaching from natural deposits
Sulfate (ppm)	NS	0.5	500	*****************	11-16		12.5	1.2	2-1.4	1.3	Run-off/leaching from natural deposits
		Color (unics)	мә		13	RU	ИD	NU	NU	Maturally occurring organic materi	als
		Manganese (ppb)	NS	20	50	<20	<20	3-15.1	8.57	Run-off/leaching from natural depo	its
		ADDITIONAL CONSTITUENTS								Or diversariant to the cost annual to	h-
		Sodium (ppm)	NS		NS	7.5-8.9	8.1	52-56.4	54.2	Sodium refers to the salt present water. It is naturally occurring.	in
		Total Hardness CaCO ₃ (ppm)	NS		NS	99-115	110.8	141-150	145.5	Erosion of natural deposits	
		Total Alkalinity CaCO ₃ (ppm)	NS		NS	100-120	106.6	120-190	145	Erosion of natural deposits	
		Calcium (ppm)	NS		NS	20-25	21.8	27.7-29.5	28.6	Erosion of natural deposits	
		Total Radon 222 (pCi/L) ⁵	NS	100	NS	171-382	225.2	445-455	450	Found in the soil throughout the U	S.
		Temperature °C (°F)	NS		NS	NA	NA	11(51)-28(83)	19(66)	Water temp. in Distribution Syste	m
		Santa Rosa's drinking water med carefully managed to be depend	able and safe.	tate and Federa	al drinking water healt	h standards. You				* 90th percentile detected	
		Mote: Listed in the table above are substances detected in the City's drinking water. A full listing of sample results is no our website. 1 The Water Agency has 9 different groundwater sources that can be Nended together. The range detected and the reporting value are the high, low, average and weighted average of the 9 sources. 2 Santa Ross water data includes sampling taken in			The Manganese reporting value is after breatment. 3 Fluoridation to fight tooth decay has not been implemented in Sarta Ross. The optimal dose of fluoride in water to fight tooth decay is 0.7 ppm. 4 Benzene was not present in regulatory quarterly source water sampling, but was found in post-frie investibicative assembler related to the introduction the home of the control of t			mylor factories, leaching from gas storage tanks and landfills "is EPA recommended language that does not apply to our unique contamination. 5 Radion is a radioactive gas that can get into indoor air when released from the pwater from showering or running a flaucet. Radio nettering the boms through than water is a were small source. Our radio		munity water suppliers to provide water win levels no higher than 4,000 p.C.V., which tributes about 0.4 p.C.V.L or adon to the air our hone. More information is available PAW whester. http://www.eps.gov/adon/ater.html. The State allows us to monitor some contaminants less than once per year raden data for Santa Rosa's source, though essentiative, was sampled in 2009.	

2017 Water Quality Sampling Results

TABLE OF DETECTED CHEMICALS OR CONSTITUENTS IN 2017

				WATER	AGENCY1	SANTA	ROSA ²	
Substance (Parameter)	Public Health Goal {MCLG}	DLR	Maximum Contaminant Level	Range Detected	Reporting Value	Range Detected	Reporting Value	Major Source in Drinking Water
PRIMARY STANDARDS Detected I	Regulated Contaminant	s with Primary	MCLs or MRDLs					
INORGANIC CONTAMINANTS								
Fluoride (ppm) ³	1	0.1	4.0	ND	ND	0.19-0.22	0.2	Erosion of natural deposits
Nitrate (as N ppm)	1	0.4	1	ND	ND	ND	ND	Runoff/leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
ISTRIBUTION SYSTEM DETECTIONS 2	017							
MICROBIOLOGICAL CONTAMINANTS								
Total Coliform Bacteria from Santa Rosa Distribution System	0		5% of monthly samples	NA	NA	0%-0.77%	0%	Naturally present in the environment
Total Trihalomethanes (ppb)	NS		80	NA	NA	17.3-25.6	25.63	By-product of drinking water chlorination
Haloacetic Acids (ppb)	NS		60	NA	NA	5.6-8.3	6.85	By-product of drinking water chlorination
Disinfectant-Free Chlorine (Cl ₂) Residual (ppm)	MRDLG as Cl ₂ 4.0		MRDLG as Cl ₂ 4.0	NA	NA	0.02-1.6	0.78	Disinfectant to control microbes
pH (units) prior to pH adjustment	NS		NS	NA	NA	7-8.5	7.78	Sodium Hydroxide addition

Benzene (ppb)⁴ see Restoring Fire Water System in Fountaingrove article on next page

0.15

5

1

Discharge from plastics, dyes and nylon factories; leaching from gas storage tanks and landfills

SECONDARY STANDARDS A esthetic Standards Established by the State Water Resources Control Board's Division of Drinking Water

Threshold Odor Number (TON) at 60°C	NS	1						
		'	3	ND	ND	ND	ND	Naturally occurring organic materials
Chloride (ppm)	NS		500	5.5-4.7	5.0	17.9-24.3	21.1	Run-off/leaching from natural deposits
Sulfate (ppm)	NS	0.5	500	11-16	12.5	1.2-1.4	1.3	Run-off/leaching from natural deposits
Specific Conductance (umhas/cm)	NS		1600	230-280	246.6	470-510	490	Substances from ions when in water
Total Dissolved Solids (ppm)	NS		1000	140-160	145	340-370	355	Run-off/leaching from natural deposits
Color (units)	NS		15	ND	ND	ND	ND	Naturally occurring organic materials
Manganese (ppb)	NS	20	50	<20	<20	3-15.1	8.57	Run-off/leaching from natural deposits
ADDITIONAL CONSTITUENTS								
Sodium (ppm)	NS		NS	7.5-8.9	8.1	52-56.4	54.2	Sodium refers to the sait present in water, it is naturally occurring.
Total Hardness CaCO ₃ (ppm)	NS		MS	99-115	110.8	141-150	145.5	Erosion of natural deposits
Fotal Alkalinity CaCO ₃ (ppm)	NS		NS	100-120	106.6	120-190	145	Erosion of natural deposits
Calcium (ppm)	NS		MS	20-25	21.8	27.7-29.5	28.6	Erosion of natural deposits
Total Radon 222 (pCi/L) ⁵	NS	100	NS	171-382	225.2	445-455	450	Found in the soil throughout the U.S.
Temperature "C ("F)	NS		MS	NA	NA	11(51)-28(83)	19(66)	Water temp. in Distribution System
Santa Rosa's drinking water mee carefully managed to be dependa		State and Federal	drinking water he	alth standards. Your w	rater is tested we	ekly and the water syste	m is	* 90th percentile detected

Note: Listed in the table above are substances

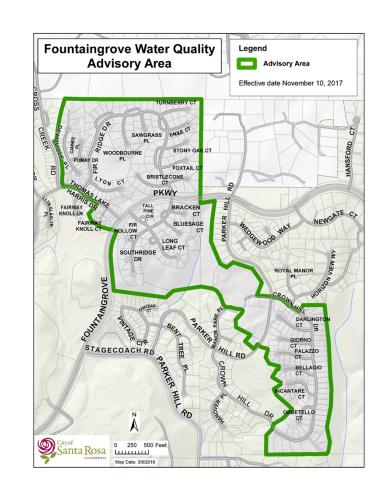
detected in the City's drinking water. A full listing of sample results is on our website.

1 The Water Agency has 9 different groundwater

1 The Water Agency has 9 different groundwater sources that can be blended together. The range detected and the reporting value are the high, low, average and weighted average of the 9 sources.

Santa Rosa water data includes sampling taken in
the distribution system and from source water wells.

Our two chinking water wells are sampled separately. The Manganese reporting value is after treatment. 3 Fluoridation to fight tooth decay has not been implemented in Santa Rosa. The optimal dose of


fluoride in water to fight tooth decay is 0.7 ppm. 4 Benzene was not present in regulatory quarterly source water sampling, but was found in post-fire investigative sampling related to the introduction of melted plastics in an isolated area of Fountaingrove. "Discharge from plastics, dyes and nylon factories; leaching from gas storage tanks and landfills" is EPA recommended language that does not apply to our unique contamination.

5 Radon is a radioactive gas that can get into indoor air when released from tap water from showering or running a faucet. Radon entering the home through tap water is a very small source community water suppliers to provide water with radon levels no higher than 4,000 pO/J. which contributes about 0.4 pO/J. of radon to the air in your home. More information is available at EPA website: http://www.eps.gov/radon/rwwater.html. The State allows us to monitor for some contaminants less than once per year. Our radon data for Santa Rosa's source, though representable, was sampled in 2009.

SRCITY.ORG/WATERQUALITYREPORTS | JUNE 2018

Benzene Exceedance

- Update on the investigation
- Summary of Actions Taken
- Information on Resolution
- Next Steps

Questions?

