Attachment 13

(WW-Trans

Final Traffic Impact Study for the Burbank Avenue Subdivision Project

Prepared for the City of Santa Rosa

Submitted by
W-Trans

December 11, 2019

This page intentionally left blank

Table of Contents

Executive Summary 1
Introduction 2
Transportation Setting 4
Capacity Analysis 7
Alternative Modes 21
Access and Circulation 23
Parking 26
Conclusions and Recommendations 27
Study Participants and References 29
Figures

1. Study Area and Existing Lane Configurations 3
2. Existing Traffic Volumes 11
3. Baseline Traffic Volumes 13
4. Site Plan 14
5. Project Traffic Volumes and Trip Distribution 16
6. Existing plus Project Traffic Volumes 17
7. Baseline plus Project Traffic Volumes 19
Tables
8. Collision Rates at the Study Intersections 5
9. Planned Bicycle Facilities in the Project Vicinity 6
10. Intersection Level of Service Criteria 8
11. Existing Peak Hour Intersection Levels of Service 10
12. Baseline Peak Hour Intersection Levels of Service 12
13. Trip Generation Summary 15
14. Trip Distribution Assumptions 15
15. Existing and Existing plus Project Peak Hour Intersection Levels of Service 18
16. Baseline and Baseline plus Project Peak Hour Intersection Levels of Service. 20
17. Parking Analysis Summary 26

Appendices

A. Collision Rate Calculations
B. Intersection Level of Service Calculations
C. Proposed Street Cross-Sections
D. Warrant Analyses

This page intentionally left blank

Executive Summary

The proposed Burbank Avenue Subdivision would be located at 1400, 1690, 1720, and 1780 Burbank Avenue and would consist of 64 apartments, 62 single-family detached residences, and 12 single-family duplex units. Based on application of standard trip generation rates, the project is anticipated to generate an average of 1,158 daily vehicle trips, including 83 trips during the weekday morning peak hour and 108 trips during the weekday evening peak hour.

The study area includes the intersections of Burbank Avenue with Sebastopol Road, Hughes Avenue, and Hearn Avenue. Analysis indicates that these are currently operating acceptably at LOS A overall during both peak hours, though the southbound approach at Hearn Avenue/Burbank Avenue is operating at LOS F during both the morning peak hour and evening peak hour. Upon the addition of project-related traffic to Existing volumes, all three study intersections would continue to operate acceptably overall and the project's impact would be considered less-than-significant, though the southbound approach at Hearn Avenue/Burbank Avenue would experience increased delays during both peak hours.

Under Baseline volumes, which include the addition of traffic associated with Roseland Accelerated Middle School, Roseland Village, and Sebastopol Road Town Homes, the study intersections would be expected to continue operating acceptably overall without or with the proposed project and the southbound approach at Hearn Avenue/Burbank Avenue would continue to operate with substantial delays during both peak hours. With the addition of project traffic, the intersection would operate at LOS E overall during the a.m. peak hour. It is understood that the City is aware of the high delays experienced on the southbound approach of Hearn Avenue/ Burbank Avenue and has plans to signalize the intersection, as contained in the Santa Rosa Roseland Area/ Sebastopol Road Specific Plan, though with a realignment that would place the signalized intersection north of its current location. While the traffic added from this project would result in the intersection reaching LOS E, the project would not cause a significant impact were it not for the substantial volume of traffic added by the Roseland Accelerated Middle School. In recognition of this, City staff has identified that the project should pay a fee $\$ 96,000$ for the signalization of the intersection of Hearn Avenue/Burbank Avenue.

Access for pedestrians and bicyclists will be adequate upon completion of the planned future improvements to Burbank Avenue, which include the provision of sidewalks on both sides of the street and Class II bike lanes in both directions of travel. The project will complete a portion of these improvements along their frontage. The City of Santa Rosa should consider initiating a CityBus route along Burbank Avenue to serve the developing area.

A left-turn lane on Burbank Avenue at the new street connections is not warranted under Baseline plus Project volumes during either the a.m. or p.m. peak hour. A traffic signal is warranted at the intersection of Hearn Avenue/Burbank Avenue under Baseline and Baseline plus Project volumes during both peak hours. All-way stopcontrols are not warranted at the intersection of Hughes Road/Burbank Avenue under any scenario evaluated.

Site access and circulation are expected to operate acceptably, and adequate sight distance is available in each direction at the project driveway.

Based on the most recent site plan, the proposed parking supply is adequate to meet City requirements. Bicycle parking would be adequate because the units have private garages for bicycle storage.

Introduction

This report presents an analysis of the potential traffic impacts that would be associated with development of 64 apartments, 62 single-family detached residences, and 12 single-family duplex units at 1400, 1690, 1720 and 1780 Burbank Avenue in the City of Santa Rosa. The traffic study was completed in accordance with the criteria established by the City of Santa Rosa, reflects a scope of work reviewed and approved by City staff, and is consistent with standard traffic engineering techniques.

Prelude

The purpose of a traffic impact study is to provide City staff and policy makers with data they can use to make an informed decision regarding the potential traffic impacts of a proposed project, and any associated improvements that would be required to mitigate these impacts to a level of insignificance as defined by the City's General Plan or other policies. Vehicular traffic impacts are typically evaluated by determining the number of new trips that the proposed use would be expected to generate, distributing these trips to the surrounding street system based on existing travel patterns or anticipated travel patterns specific to the proposed project, then analyzing the impact the new traffic would be expected to have on critical intersections or roadway segments. Impacts relative to access for pedestrians, bicyclists, and to transit are also addressed.

Project Profile

The project site is located on the east side of Burbank Avenue opposite Roseland Creek Elementary School, as shown in Figure 1. As proposed, the project would merge four parcels at 1400, 1690, 1720 and 1780 Burbank Avenue to construct 64 apartments, 62 single-family detached residences, and 12 single-family duplex units. To make room for the new housing, one existing single-family residence would be removed. The development would be accessed via two new street connections to Burbank Avenue.

Transportation Setting

Operational Analysis

Study Area and Periods

The study area consists of the following intersections:

1. Sebastopol Road/Burbank Avenue
2. Hughes Avenue/Burbank Avenue
3. Hearn Avenue/Burbank Avenue

Operating conditions during the weekday a.m. and p.m. peak periods were evaluated to capture the highest potential impacts for the proposed project as well as the highest volumes on the local transportation network. The morning peak hour occurs between 7:00 and 9:00 a.m. and reflects conditions during the home to work or school commute, while the p.m. peak hour occurs between 4:00 and 6:00 p.m. and typically reflects the highest level of congestion during the homeward bound commute.

Study Intersections

Sebastopol Road/Burbank Avenue is a signalized "tee" intersection with a private one-way northbound driveway entrance to Roseland Mobile Home Park forming the north leg of the intersection. Left-turn lanes are provided on the westbound and eastbound Sebastopol Road approaches and there is protected left-turn phasing on the westbound approach, but permitted left-turn phasing eastbound. There are marked crosswalks on the south and west legs.

Hughes Avenue/Burbank Avenue is an unsignalized intersection that is stop-controlled on the eastbound and westbound approaches. Marked yellow crosswalks are present on the north and west legs.

Hearn Avenue/Burbank Avenue is an unsignalized intersection stop-controlled on the northbound Southwest Community Park access point and the southbound Burbank Avenue approach. Left-turn lanes are provided on the eastbound and westbound Hearn Avenue approaches and the east leg has a marked crosswalk.

On Burbank Avenue at the northern border of the Roseland School District building, there is an existing actuated flashing warning beacon and a yellow zebra striped crosswalk. The crosswalk and beacon connect the multi-use path on the west side of Burbank Avenue to the asphalt curb separated path on the east side of the street.

The locations of the study intersections and the existing lane configurations and controls are shown in Figure 1.

Collision History

The collision history for the study area was reviewed to determine any trends or patterns that may indicate a safety issue. Collision rates were calculated based on records available from the California Highway Patrol as published in their Statewide Integrated Traffic Records System (SWITRS) reports. The most current five-year period available is December 1, 2013 through November 30, 2018.

As presented in Table 1, the calculated collision rates for the study intersections were compared to average collision rates for similar facilities statewide, as indicated in 2014 Collision Data on California State Highways,

California Department of Transportation (Caltrans). Two of the three study intersections have above-average collision rates. The collision rate calculations are provided in Appendix A.

Table 1 - Collision Rates at the Study Intersections

Study Intersection	Number of Collisions $(\mathbf{2 0 1 3 - 2 0 1 8)}$	Calculated Collision Rate (c/mve)	Statewide Average Collision Rate (c/mve)
1. Sebastopol Rd/Burbank Ave	16	$\mathbf{0 . 5 6}$	0.43
2. Hughes Ave/Burbank Ave	2	0.21	0.26
3. Hearn Ave/Burbank Ave	8	$\mathbf{0 . 3 3}$	0.26

Note: $\quad c / m v e=$ collisions per million vehicles entering; bold text indicates a collision rate that exceeds the Statewide average for similar facilities

At Sebastopol Road/Burbank Avenue, 10 out of the 16 collisions were either broadsides (six) or rear-ends (four). The rear-end crashes are common at signalized intersections during congested conditions and the broadside crashes, five of which were between westbound left-turning vehicles and eastbound through vehicles, are likely due to the left-turning drivers entering at the end of the yellow clearance interval. Consideration could be given to increasing the red-clearance interval to give motorists more time to clear the intersection prior to the green indication for the next movement, which would likely help to reduce the incidence of broadside crashes.

The predominant crash type at Hearn Avenue/Burbank Avenue was broadside collisions; of five such crashes three involved vehicles entering Hearn Avenue from either Burbank Avenue or the Southwest Community Park. It is noted that with fewer than five preventable crashes in a year (the highest number was three in twelve months) a traffic signal is not currently warranted for safety reasons, but the City may wish to monitor the crash history at this location to ensure that conditions do not worsen.

Alternative Modes

Pedestrian Facilities

Pedestrian facilities include sidewalks, crosswalks, pedestrian signal phases, curb ramps, curb extensions, and various streetscape amenities such as lighting, benches, etc. Although a connected sidewalk network is lacking on Burbank Avenue, pedestrian access is provided via a combination of sidewalks and multi-use paths on the shoulders of the roadway. The section along Roseland Creek Elementary School has a sidewalk along its frontage, while the section between the school and Hearn Avenue has a multi-use path on the eastern shoulder and the section north of the school has a multi-use path on the western shoulder. The path is separated from the travel lanes by an asphalt curb. A crosswalk with an actuated flashing warning beacon connects the facilities on the east side of the street with those on the west side near the southern end of the school property.

The Santa Rosa Roseland Area/Sebastopol Road Specific Plan (Specific Plan), completed in November 2016, identifies plans to redesign Burbank Avenue with a greater focus on safety for pedestrians and bicyclists. As proposed, the roadway would have sidewalks on both sides of the street and Class II bike lanes in both directions of travel; furthermore, the segment between the project site and Hearn Avenue would include a tree-lined bioswale that would separate the sidewalk from the bike lanes and travel lanes. The plan references an existing segment of Burbank Avenue adjacent to Roseland Creek Elementary School, which already has a Class II bike lane and separated sidewalk, as an example for the rest of the roadway.

Bicycle Facilities

The Highway Design Manual, Caltrans, 2017, classifies bikeways into four categories:

- Class I Multi-Use Path - a completely separated right-of-way for the exclusive use of bicycles and pedestrians with cross flows of motorized traffic minimized.
- Class II Bike Lane - a striped and signed lane for one-way bike travel on a street or highway.
- Class III Bike Route - signing only for shared use with motor vehicles within the same travel lane on a street or highway.
- Class IV Bikeway - also known as a separated bikeway, a Class IV Bikeway is for the exclusive use of bicycles and includes a separation between the bikeway and the motor vehicle traffic lane. The separation may include, but is not limited to, grade separation, flexible posts, inflexible physical barriers, or on-street parking.

Per the Specific Plan Burbank Avenue is to have six-foot bike lanes in both directions of travel that would connect to the existing bike lane along the school frontage as well as to the existing bike lanes on Sebastopol Road and Hearn Avenue. The document also indicates that in the future there will be a Class I trail along Roseland Creek from Stony Point Road to McMinn Avenue that would cross Burbank Avenue just south of the project site. Table 2 summarizes the planned bicycle facilities in the project vicinity, as contained in the Specific Plan.

Table 2 - Planned Bicycle Facilities in the Project Vicinity	Begin Point	End Point		
Facility	Class	Length (miles)	而	
Roseland Creek Trail	I	1.0	Stony Point Rd	McMinn Ave
Burbank Ave	II	1.0	Sebastopol Rd	Hearn Ave

Source: Santa Rosa Roseland Area/Sebastopol Road Specific Plan, City of Santa Rosa, 2016

Transit Facilities

Santa Rosa CityBus provides fixed route bus service in Santa Rosa. There are no CityBus stops located within onequarter mile of the project site, but Routes 2,12 , and 15 serve southwest Santa Rosa seven days a week. Route 2 stops on Sebastopol Road approximately 200 feet east of Burbank Avenue. Routes 12 and 15 stop at Southwest Community Park approximately 120 feet south of the intersection of Hearn Avenue/Burbank Avenue. These transit stops are roughly one-half mile from the project site so transit would be a viable option for most project residents, though not as convenient as is typically considered desirable.

Sonoma County Transit (SCT) provides regional service throughout Sonoma County. Route 22 stops on Sebastopol Road at Burbank Avenue and operates Monday through Friday with approximately one- to six-hour headways between 7:15 a.m. and 5:30 p.m.

Two to three bicycles can be carried on most CityBus and SCT buses. Bike rack space is on a first-come, first-served basis. Additional bicycles are allowed on SCT buses at the discretion of the driver.

Paratransit, also known as dial-a-ride, or door-to-door service, is available for those who are unable to independently use the transit system due to a physical or mental disability. CityBus paratransit is contracted out to MV Transportation and is designed to serve the needs of individuals with disabilities within three-quarters (3/4) of a mile from existing CityBus routes. Paratransit service is available seven days a week, but rides must be scheduled one day in advance.

Capacity Analysis

Intersection Level of Service Methodologies

Level of Service (LOS) is used to rank traffic operation on various types of facilities based on traffic volumes and roadway capacity using a series of letter designations ranging from A to F. Generally, Level of Service A represents free flow conditions and Level of Service F represents forced flow or breakdown conditions. A unit of measure that indicates a level of delay generally accompanies the LOS designation.

The study intersections were analyzed using methodologies published in the Highway Capacity Manual (HCM), Transportation Research Board, $6^{\text {th }}$ Edition, 2018. This source contains methodologies for various types of intersection control, all of which are related to a measurement of delay in average number of seconds per vehicle.

The Levels of Service for the intersections with side-street stop controls, or those which are unsignalized and have one or two approaches stop controlled, were analyzed using the "Two-Way Stop-Controlled" intersection capacity method from the HCM. This methodology determines a level of service for each minor turning movement by estimating the level of average delay in seconds per vehicle. Results are presented for individual movements together with the weighted overall average delay for the intersection.

The study intersections that are currently controlled by a traffic signal, or may be in the future, were evaluated using the signalized methodology from the HCM. This methodology is based on factors including traffic volumes, green time for each movement, phasing, whether the signals are coordinated or not, truck traffic, and pedestrian activity. Average stopped delay per vehicle in seconds is used as the basis for evaluation in this LOS methodology. Delays were calculated using signal timing obtained from the City staff.

The ranges of delay associated with the various levels of service are indicated in Table 3.

Table 3 - Intersection Level of Service Criteria

LOS	Two-Way Stop-Controlled	Signalized
A	Delay of 0 to 10 seconds. Gaps in traffic are readily available for drivers exiting the minor street.	Delay of 0 to 10 seconds. Most vehicles arrive during the green phase, so do not stop at all.
B	Delay of 10 to 15 seconds. Gaps in traffic are somewhat less readily available than with LOS A, but no queuing occurs on the minor street.	Delay of 10 to 20 seconds. More vehicles stop than with LOS A, but many drivers still do not have to stop.
C	Delay of 15 to 25 seconds. Acceptable gaps in traffic are less frequent, and drivers may approach while another vehicle is already waiting to exit the side street.	Delay of 20 to 35 seconds. The number of vehicles stopping is significant, although many still pass through without stopping.
D	Delay of 25 to 35 seconds. There are fewer acceptable gaps in traffic, and drivers may enter a queue of one or two vehicles on the side street.	Delay of 35 to 55 seconds. The influence of congestion is noticeable, and most vehicles have to stop.
E	Delay of 35 to 50 seconds. Few acceptable gaps in traffic are available, and longer queues may form on the side street.	Delay of 55 to 80 seconds. Most, if not all, vehicles must stop and drivers consider the delay excessive.
F	Delay of more than 50 seconds. Drivers may wait for long periods before there is an acceptable gap in traffic for exiting the side streets, creating long queues.	Delay of more than 80 seconds. Vehicles may wait through more than one cycle to clear the intersection.

Reference: Highway Capacity Manual, Transportation Research Board, $6{ }^{\text {th }}$ Edition, 2018

Traffic Operation Standards

City of Santa Rosa

Section 5.8 Transportation Goals \& Policy of the City of Santa Rosa General Plan states:
T-D-1 - Maintain a Level of Service (LOS) D or better along all major corridors. Exceptions to meeting the standard include:

- Within downtown;
- Where attainment would result in significant degradation;
- Where topography or impacts makes the improvement impossible; or
- Where attainment would ensure loss of an area's unique character.

The LOS is to be calculated using the average traffic demand over the highest 60-minute period.
Traffic Engineering Division will require a level of service evaluation of arterial and collector corridors if deemed necessary.

T-D-2 - Monitor level of service at intersections to assure that improvements or alterations to improve corridor level of service do not cause severe impacts at any single intersection.

General interpretation of Policy T-D-2. The impact to an intersection is considered significant if the project related and/or future trips result in:

1. The level of service (LOS) at an intersection degrading from LOS D or better to LOS E or $F, O R$
2. An increase in average vehicle delay of greater than 5 seconds at a signalized intersection where the current LOS operates at either LOS E or F.
3. Queuing impacts based on a comparative analysis between the design queue length and the available queue storage capacity. Impacts include, but are not limited to, spillback queue at project access locations (both ingress and egress), turn lanes at intersections, lane drops, spill back that impacts upstream intersections or interchange ramps.
4. Exceptions may be granted under the following conditions:
a. Within downtown,
b. Where attainment would result in significant degradation,
c. Where topography or impacts makes the improvement impossible; or
d. Where attainment would ensure loss of an area's unique character.

T-C-3 - Implement traffic calming techniques on streets subject to high speed and/or cut-through traffic, in order to improve neighborhood livability, Techniques Include:

- Narrow Streets
- On-street parking
- Choker or diverters
- Decorative crosswalks
- Planted islands

General interpretation of Policy T-C-3. An impact is considered significant if the project has the potential to alter community character by significantly increasing cut-through traffic, unexpected vehicle maneuvers or commercial vehicle trips in a residential area.

T-H-3 - Require new development to provide transit improvements, where a rough proportionality to demand from the project is established. Transit improvements may include:

- Direct and paved pedestrian access to transit stops
- Bus turnouts and shelters
- Lane width to accommodate buses.

General interpretation of Policy T-H-3. An impact is considered significant if the project has the potential to disrupt existing transit operations or establishes transit facilities and equipment such that it creates a sight distance deficiency or vehicle conflict point.
\boldsymbol{T}-J - Provide attractive and safe streets for pedestrian and bicyclists.
General interpretation of Policy T-J. An impact is considered significant if the project generates 20 pedestrians in any single hour at an unsignalized intersection, mid-block crossing or where no crossing has been established.

An impact is further considered significant if the project interrupts existing or proposed pedestrian, bicycle and transit facilities, path or travel, direct access resulting in excessive rerouting or creates a vehicle conflict condition which affects the safety of other roadway users.

Reporting of Peak Hour Delay

Per the City of Santa Rosa's General Plan policy T-D-1, LOS is calculated based on the average traffic demand over the hour, rather than the peak 15 minutes within the hour; therefore, a peak hour factor (PHF) of 1.0 was used in the analysis.

Existing Conditions

The Existing Conditions scenario provides an evaluation of current operation based on existing traffic volumes during the a.m. and p.m. peak hours. This condition does not include project-generated traffic volumes. Volume data was collected in September 2019 during clear weather and while local schools were in session.

Intersection Levels of Service

Under Existing Conditions, the study intersections operate acceptably at LOS A overall during both peak hours studied. A summary of the intersection level of service calculations is contained in Table 4, and copies of the Level of Service calculations for all evaluated scenarios are provided in Appendix B. The existing traffic volumes are shown in Figure 2.

Table 4 - Existing Peak Hour Intersection Levels of Service

Study Intersection Approach	AM Peak		PM Peak		
	Delay	LOS	Delay	LOS	
1.	Sebastopol Rd/Burbank Ave	9.1	A	7.0	A
2.	Hughes Ave/Burbank Ave	3.2	A	2.6	A
	Eastbound Approach	14.8	B	12.5	B
Westbound Approach	17.1	C	12.2	B	
3.	Hearn Ave/Burbank Ave	8.9	A	7.0	A
\quad Northbound Approach	21.8	C	23.3	C	
Southbound Approach	64.7	F	50.3	F	

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for minor approaches to two-way stop-controlled intersections are indicated in italics

Though the intersection of Hearn Avenue/Burbank Avenue is operating acceptably at LOS A overall, the City is aware of the high delays experienced on the southbound approach and has plans to signalize the intersection, as detailed in the Specific Plan. The installation of a signal would be expected to reduce the delays on the southbound approach to a tolerable level.

Baseline Conditions

Baseline (Existing plus Approved or Pending) operating conditions were determined with traffic from approved and pending projects in and near the study area added to the Existing volumes. As directed by staff, the following projects contained in the Citywide Summary of Pending Development Report were included for Baseline Conditions. The same trip generation and trip distribution assumptions used in the traffic studies for the projects were used in this analysis. Standard rates as published in Trip Generation Manual, 10th Edition, 2017, were applied in both traffic studies.

Roseland Accelerated Middle School is a proposed project that would relocate an existing 300-student middle school campus to the Roseland Creek Elementary School site on Burbank Avenue. The project is expected to generate 567 trips per day, including 189 trips during the morning peak hour and 105 trips during the evening peak hour.

Roseland Village is a pending 175 -unit multifamily residential development with up to 20,000 square feet of retail space that would be located at 665 Sebastopol Road. The project is expected to generate 1,775 new trips per day, including 109 trips during the morning peak hour and 183 trips during the evening peak hour.

Sebastopol Road Town Homes is an approved 198-unit multifamily residential development to be located at 1755 Sebastopol Road. The project is expected to generate 1,456 new trips per day, including 184 trips during the morning peak hour and 131 trips during the evening peak hour.

Intersection Levels of Service

Upon adding trips from the approved and pending projects to Existing volumes, the study intersections are expected to continue operating at acceptable service levels overall, and the southbound approach to Hearn Avenue/Burbank Avenue would experience increased delays. These results are summarized in Table 5, and Baseline volumes are shown in Figure 3.

Table 5 - Baseline Peak Hour Intersection Levels of Service				
Study Intersection Approach	AM Peak		PM Peak	
Delay	LOS	Delay	LOS	
1. Sebastopol Rd/Burbank Ave	10.4	B	7.8	A
2. Hughes Ave/Burbank Ave	3.2	A	2.5	A
Eastbound Approach	16.4	C	13.2	B
Westbound Approach	19.4	C	12.8	B
3. Hearn Ave/Burbank Ave	28.1	D	13.2	B
\quad Northbound Approach	32.6	D	27.1	D
Southbound Approach	188.5^{*}	F	91.5^{*}	F

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for minor approaches to two-way stop-controlled intersections are indicated in italics; * $=$ delay exceeds reliable threshold of methodology

Project Description

The project site is located on the east side of Burbank Avenue opposite Roseland Creek Elementary School. As proposed, the project would merge four parcels at 1400, 1690, 1720 and 1780 Burbank Avenue to construct 64 apartments, 62 single-family detached residences, and 12 single-family duplex units. To make room for the new housing, one existing single-family residence would be removed. The development would be accessed via two new street connections to Burbank Avenue. The proposed project site plan is shown in Figure 4.

Trip Generation

The anticipated trip generation for the proposed project was estimated using standard rates published by the Institute of Transportation Engineers (ITE) in Trip Generation Manual, 10 ${ }^{\text {th }}$ Edition, 2017. Rates for "Single-Family Detached Housing" (LU \#210) were applied to the proposed single-family homes and duplex units and to the existing residence that would be removed. Rates for "Multifamily Housing (Low-Rise)" (LU \#220) were applied to the proposed apartment units. Based on application of these rates, the proposed project would be expected to result in 1,167 daily trips on average, including 84 trips during the weekday a.m. peak hour and 109 trips during the p.m. peak hour; these results are shown in Table 6. After deductions for the existing residence are taken into account, the project would result in 1,158 new daily trips on average to the surrounding roadway network, including 83 new trips during the morning peak hour and 108 new trips during the evening peak hour.

Table 6 - Trip Generation Summary

Land Use	Units	Daily			AM Peak Hour				PM Peak Hour			
		Rate	Trips	Rate	Trips	In	Out	Rate	Trips	In	Out	
Existing												
Single-Family Detached Housing	1 du	9.44	9	0.74	1	0	1	0.99	1	1	0	
Proposed												
Multifamily Housing (Low-Rise)	64 du	7.32	468	0.46	29	7	22	0.56	36	23	13	
Single-Family Detached Housing	74 du	9.44	699	0.74	55	14	41	0.99	$\mathbf{7 3}$	46	$\mathbf{2 7}$	
Total Proposed			1,167		84	21	63		109	69	40	
Net New Trips			$\mathbf{1 , 1 5 8}$	$\mathbf{8 3}$	$\mathbf{2 1}$	$\mathbf{6 2}$		$\mathbf{1 0 8}$	$\mathbf{6 8}$	$\mathbf{4 0}$		

Note: $\quad d u=d w e l l i n g ~ u n i t ~$

Trip Distribution

The pattern used to allocate new project trips to the street network was based on a review of existing turning movements at the study intersections and knowledge of the area and surrounding region, including previous analyses prepared for other projects in the vicinity. The applied distribution assumptions are shown in Table 7.

Table 7 - Trip Distribution Assumptions

Route	Percent
Sebastopol Rd (East of Burbank Ave)	35%
Sebastopol Rd (West of Burbank Ave)	25%
Hearn Ave (East of Burbank Ave)	25%
Hearn Ave (West of Burbank Ave)	15%
TOTAL	$\mathbf{1 0 0 \%}$

Intersection Operation

Existing plus Project Conditions

Upon the addition of project-related traffic to the Existing volumes, the study intersections are expected to continue operating acceptably at LOS A or B overall, though the southbound approach to Hearn Avenue/Burbank Avenue would experience increased delays. Project traffic volumes are shown in Figure 5 and Existing plus Project volumes are shown in Figure 6. These results are summarized in Table 8.

Traffic Impact Study for the Burbank Avenue Subdivision Project
Figure 5 - Project Traffic Volumes and Trip Distribution

Table 8 - Existing and Existing plus Project Peak Hour Intersection Levels of Service

Study Intersection Approach	Existing Conditions				Existing plus Project			
	AM Peak		PM Peak		AM Peak		PM Peak	
	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
1. Sebastopol Rd/Burbank Ave	9.1	A	7.0	A	9.8	A	7.7	A
2. Hughes Ave/Burbank Ave	3.2	A	2.6	A	3.2	A	2.4	A
Eastbound Approach	14.8	B	12.5	B	15.5	C	13.2	B
Westbound Approach	17.1	C	12.2	B	18.2	C	12.9	B
3. Hearn Ave/Burbank Ave	8.9	A	7.0	A	13.8	B	9.5	A
Northbound Approach	21.8	C	23.3	C	22.2	C	24.6	C
Southbound Approach	64.7	F	50.3	F	94.0	F	67.8	F

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for minor approaches to two-way stop-controlled intersections are indicated in italics

It should be noted that with the addition of project-related traffic volumes, average delay at the intersection of Hughes Avenue/Burbank Avenue decreases slightly during the p.m. peak hour. While this is counter-intuitive, this condition occurs when a project adds trips to movements that are currently underutilized or have delays that are below the intersection average, resulting in a better balance between approaches and lower overall average delay. The project would add traffic predominantly to the northbound and southbound through movements, which have average delays that are lower than the average for the intersection as a whole, resulting in a slight reduction in the overall average delay. The conclusion could incorrectly be drawn that the project actually improves operation based on this data alone; however, it is more appropriate to conclude that the project trips are expected to make use of excess capacity at this location, so drivers will experience little, if any, change in conditions as a result of the project.

Finding -The study intersections are expected to continue operating acceptably overall during both peak hours upon the addition of project-related traffic to Existing volumes. Although the southbound approach at Hearn Avenue/Burbank Avenue is expected to operate at LOS F, the project's impact would be considered less-thansignificant as the intersection would be expected to continue operating acceptably overall.

Baseline plus Project Conditions

With project-related traffic added to Baseline volumes, the study intersections Sebastopol Road/Burbank Avenue and Hughes Avenue/Burbank Avenue are expected to continue operating acceptably at LOS B or better overall. However, the intersection of Hearn Avenue/Burbank Avenue would be expected to operate at LOS E overall during the a.m. peak hour. Baseline plus Project volumes are shown in Figure 7 and these results are summarized in Table 9.

Table 9 - Baseline and Baseline plus Project Peak Hour Intersection Levels of Service

| Study Intersection
 Approach | Baseline Conditions | | | | Baseline plus Project | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | AM Peak | PM Peak | AM Peak | | PM Peak | | | | |
| | Delay | LOS | Delay | LOS | Delay | LOS | Delay | LOS | |
| 1. | Sebastopol Rd/Burbank Ave | 10.4 | B | 7.8 | A | 11.2 | B | 8.6 | A |
| 2. | Hughes Ave/Burbank Ave | 3.2 | A | 2.5 | A | 3.2 | A | 2.3 | A |
| | Eastbound Approach | 16.4 | C | 13.2 | B | 17.4 | C | 14.0 | B |
| Westbound Approach | 19.4 | C | 12.8 | B | 20.8 | C | 13.6 | B | |
| 3. | Hearn Ave/Burbank Ave | 28.1 | D | 13.2 | B | $\mathbf{4 1 . 1}$ | E | 19.3 | C |
| | Northbound Approach | 32.6 | D | 27.1 | D | 33.5 | D | 29.0 | D |
| | Southbound Approach | 188.5^{*} | F | 91.5^{*} | F | 256.7^{*} | F | 132.0^{*} | F |

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for minor approaches to two-way stop-controlled intersections are indicated in italics; bold text indicates unacceptable operation under the County's standard; * $=$ delay exceeds reliable threshold of methodology

Finding -Two of the study intersections are expected to continue operating acceptably overall during both peak hours upon the addition of project-related traffic to Baseline volumes. However, operation at Hearn Avenue/Burbank Avenue would drop from LOS D to E during the a.m. peak hour. It is noted that without the addition of traffic from the proposed Roseland Accelerated Middle School, the intersection would operate at an acceptable LOS C overall, even with project traffic added to volumes with the other approved projects. Because the contribution of traffic from this proposed would not warrant the signalization of Hearn Avenue/Burbank Avenue without the substantially higher additional volume of traffic associated with the Roseland Accelerated Middle School, it appears reasonable for the project to contribute a proportional share of the cost for the traffic signal rather than being responsible for its entire cost.

Recommendation - The applicant should contribute a proportional share for the signalization of the intersection of Hearn Avenue/Burbank Avenue. As directed by City staff, a share of 30 percent is to be paid based on the increase in a.m. peak hour delay due to project traffic. As contained in the Infrastructure Report for Roseland Area/ Sebastopol Road Specific Plan and Roseland Area Annexation, Michael Baker International, 2016, the signalization project is estimated to have a total cost of $\$ 320,000$ ($\$ 200,000$ for construction and $\$ 120,000$ for soft costs), which equates to a fee of $\$ 96,000$ for the applicant.

Alternative Modes

Pedestrian Facilities

The proposed site plan identifies sidewalks along the project frontage and within the project, connecting the residences to each other and the street. However, the project site wraps around two properties along Burbank Avenue that contain existing houses and outbuildings and would remain in place, so the project frontage is not continuous along Burbank Avenue. A new sidewalk constructed by the project would connect the northern part of the project site to the crosswalk on Burbank Avenue with an actuated warning beacon, which is located approximately 180 feet south of the northern street connection. An existing path on the eastern shoulder of Burbank Avenue would connect the crosswalk with the warning beacon to the new project sidewalk proposed along the project's southern boundary with Burbank Avenue, so adequate connectivity would be provided between the project site and the surrounding pedestrian network. Children would be able to walk between the project site and the school facilities on the west side of the street by using the sidewalks within the site, the sidewalk or path on the east side of Burbank Avenue, the crosswalk with a warning beacon, and the sidewalk on the east side of the street.

As noted previously, improvements were identified in the Specific Plan to redesign Burbank Avenue to include continuous sidewalks on both sides of the street and Class II bike lanes in both directions of travel. The project would construct its frontage improvements in compliance with the City's future plans for the roadway, including adequate width for a bike lane, planter strip, and sidewalk, though the bike lanes would not be striped until they are more continuous. Upon completion of the planned improvements outlined in the Specific Plan along all properties fronting Burbank Avenue, sidewalks would be provided along the entirety of the street and would connect the project site to the surrounding neighborhoods as well as the existing pedestrian infrastructure on Sebastopol Road and Hearn Avenue.

Finding - The proposed project sidewalk is consistent with the improvements outlined in the Specific Plan and would adequately connect to the existing pedestrian facilities.

Bicycle Facilities

The planned bike lanes on Burbank Avenue and Class I trail along Roseland Creek would connect the site to the surrounding neighborhoods and existing bike lanes on Sebastopol Road and Hearn Avenue. The project would improve its frontage with Burbank Avenue consistent with the Specific Plan, including the provision of pavement width for Class II bike lanes, though the bike lanes would not be striped until a more continuous section of bike lane can be provided.

Finding - Bike access would be adequate upon completion of the planned bike lanes on Burbank Avenue. The project would dedicate sufficient right-of-way and construct adequate improvements to the project frontage to accommodate the future bike lanes.

Recommendation - Rather than striping two short sections of Class II bike lane along the project frontage, it is recommended that the project construct the pavement for the bike lane, but that it not be striped until a more continuous section can be provided.

Transit

Existing transit routes have transit stops located approximately one-half mile from the project site. Based on the distance between the project site and employment centers, it is reasonable to expect that some residents would want to travel using transit if it were available.

Finding - Transit facilities serving the project site are generally adequate, though not as convenient as would be desirable.

Recommendation - The applicant should request that the City of Santa Rosa consider initiating a CityBus route along Burbank Avenue to serve this developing area.

Access and Circulation

Site Access

The project would be accessed via two new public street connections with Burbank Avenue. The northern street connection, Public Road 1, would be located approximately 300 feet south of the drop-off loop exit for Roseland Creek Elementary School and the southern street connection, Public Road 4, would be about 520 feet south of the project's northern street connection. The proposed access points would not be in conflict with any existing street connections on the opposite side of Burbank Avenue, though there would be two private driveways, one on either side, of the southern access point. All proposed streets within the site are consistent with City street design standards so on-site circulation is expected to operate acceptably. The proposed street cross-sections are provided in Appendix C.

Finding - Site access and circulation within the site would be expected to operate acceptably as all street crosssections would be consistent with City design standards.

Sight Distance

Sight distances along Burbank Avenue at the locations of the proposed street connections were evaluated based on sight distance criteria contained in the Highway Design Manual published by Caltrans. The recommended sight distance at intersections of public streets is based on corner sight distances with approach travel speeds used as the basis for determining the recommended sight distance. Additionally, the stopping sight distance needed for a following driver to stop if there is a vehicle waiting to turn into a side street or driveway is evaluated based on stopping sight distance criterion and the approach speed on the major street.

For the posted $25-\mathrm{mph}$ speed limit on Burbank Avenue, the recommended corner sight distance is 275 feet and the recommended stopping sight distance is 150 feet. Based on a review of field conditions, sight lines at both of the proposed street connections extend more than 300 feet in each direction, which would be more than adequate for the posted speed limit. Additionally, as Burbank Avenue is straight and flat adjacent to the site, sight lines would be adequate for a following driver to observe and react to a motorist slowing or stopped to turn into either access point.

Finding - Adequate corner and stopping sight distances would be available to accommodate all turns into and out of the project site.

Access Analysis

Left-Turn Lane Warrants

The need for a left-turn lane on Burbank Avenue at either of the new street connections was evaluated based on criteria contained in the Intersection Channelization Design Guide, National Cooperative Highway Research Program (NCHRP) Report No. 279, Transportation Research Board, 1985, as well as an update of the methodology developed by the Washington State Department of Transportation and published in the Method For Prioritizing Intersection Improvements, January 1997. The NCHRP report references a methodology developed by M. D. Harmelink that includes equations that can be applied to expected or actual traffic volumes in order to determine the need for a left-turn pocket based on safety issues.

Based on Baseline plus Project volumes, as well as safety criteria, a left-turn lane would not be warranted on Burbank Avenue at either new street connection. A sensitivity analysis indicates that volumes on Burbank as well
as turning into the site would need to nearly double before a left-turn lane would be warranted. Copies of the Turn Lane Warrant Spreadsheets are provided in Appendix D.

Finding -A left-turn lane on Burbank Avenue at the new street connections would not be warranted under volumes for the Baseline plus project scenarios during both the a.m. and p.m. peak hours.

Traffic Signal Warrants

Although the Specific Plan already identifies the future need for a traffic signal at the intersection of Hearn Avenue/Burbank Avenue, a signal warrant study was performed. Chapter 4C of the California Manual on Uniform Traffic Control Devices (CA-MUTCD) provides guidance on when a traffic signal should be considered. There are nine different warrants, or criteria, but for the purposes of this study, only Warrant 3 (the peak hour warrant) was evaluated.

Warrant 3: Under the Peak Hour Warrant the need for a traffic control signal shall be considered if an engineering study finds that the criteria in either of the following two categories are met:
A. If all three of the following conditions exist for the same one hour (any four consecutive 15-minute periods) of an average day:

1. The total stopped time delay experienced by the traffic on one minor-street approach (one direction only) controlled by a STOP sign equals or exceeds: four vehicle-hours for a one-lane approach; or five vehicle-hours for a two-lane approach, and
2. The volume on the same minor-street approach (one direction only) equals or exceeds 100 vehicles per hour for one moving lane of traffic or 150 vehicles per hour for two moving lanes, and
3. The total entering volume serviced during the hour equals or exceeds 650 vehicles per hour for intersections with three approaches or 800 vehicles per hour for intersections with four or more approaches.
B. The plotted point representing the vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour on the higher-volume minor-street approach (one direction only) for one hour (any four consecutive 15-minute periods) of an average day falls above the applicable curve in Figure 4C-3 for the existing combination of approach lanes.

The intersection of Hearn Avenue/Burbank Avenue does not currently warrant a traffic signal under Existing volumes, but would warrant one under Baseline volumes during both the a.m. and p.m. peak hours. A signal would also be warranted under Baseline plus Project volumes. Copies of the Signal Warrant Spreadsheets are provided in Appendix D.

As contained in the Specific Plan, the intersection of Hearn Avenue/Burbank Avenue would be shifted northwest and reoriented such that new segment of Hearn Avenue would become the eastbound approach and the renamed (existing) segment of West Hearn Avenue would become the northbound approach. In addition to the change in configuration and geometry, the intersection would be signalized. Because the project would contribute to the need for these improvements, the project should pay a proportional share fee toward the cost of construction. At the direction of City staff, it was determined that a proportional share fee of 30 percent of the signalization project, or $\$ 96,000$, would be appropriate based on the additional delay caused by the project during the a.m. peak hour.

As an interim measure, all-way stop-controls (AWSC) were considered for the intersection of Hearn Avenue/Burbank Avenue; however, under Baseline and Baseline plus project volumes, the major street approaches would experience LOS F operation so installation of AWSC is therefore not recommended.

Finding - The Peak Hour Volume warrant would be met under both a.m. and p.m. peak hour volumes at the intersection of Hearn Avenue/Burbank Avenue under Baseline and Baseline plus Project Conditions. Volumes are sufficient to meet the warrant without the addition of project-generated traffic, but because the intersection would operate deficiently upon the addition of project traffic, the project would contribute to the need for a signal.

Recommendation - The applicant should be responsible for contributing a proportional share fee of $\$ 96,000$ toward the cost for the planned signalization and reconfiguration of Hearn Avenue/Burbank Avenue.

All-way Stop Control Warrants

All-way Stop Warrants

Generally, warrants for all-way stop-controlled intersections are based on guidelines contained in the California Manual on Uniform Traffic Control Devices (CA-MUTCD). The warrants include consideration of the following issues in determining potential need for all-way stop controls.

- excessive volume
- high number of collisions
- limited visibility
- excessive speeds
- crossing residential collectors
- residential frontages

An intersection meeting any one of the criteria is considered a candidate for all-way stop controls.
Based on the counts collected at the intersection of Hughes Road/Burbank Avenue, the volumes on the minor street approach are insufficient to warrant all-way stop-control, even with the 80 percent reduction for the combination warrant. Only one collision was reported in a 12 -month period susceptible to correction by AWSC; a minimum of five crashes are needed to meet the warrant. Additionally, none of the optional warrants were met. A copy of the All-Way Stop-Control Warrant is provided in Appendix D.

Finding - All-way stop-controls are not warranted at the intersection of Hughes Road/Burbank Avenue.

Parking

The project was analyzed to determine whether the proposed parking supply would be sufficient to satisfy City requirements. City of Santa Rosa parking supply requirements are based on the City of Santa Rosa City Code, Chapter 20-36; Parking and Loading. The proposed parking supply of 437 spaces is anticipated to adequately accommodate the estimated parking demand based on City Code, as shown in Table 10.

Table 10 - Parking Analysis Summary

Land Use	Units	Supply (spaces)	City Requirements	
			Rate	Spaces Required
1 bdr Apartment	17 du	64 covered sp 32 tandem sp 58 open sp	1.0 covered sp/unit 0.5 visitor $\mathrm{sp} / \mathrm{unit}$	17 covered sp 9 visitor sp
2+ bdr Apartment	47 du		1.0 covered sp/unit 1.5 visitor $\mathrm{sp} / \mathrm{unit}$	47 covered sp 70 visitor sp
Duplex	12 du	24 covered sp 24 tandem sp	1.0 covered sp/unit 1.5 visitor $\mathrm{sp} / \mathrm{unit}$	12 covered sp 18 visitor sp
Detatched Single-Family Dwelling	62 du	124 covered sp 124 tandem sp	1 covered sp/unit 3 additional sp/unit	62 covered sp 186 other sp
Total		450		421

Finding - The proposed parking supply for the project would be adequate to meet the City's parking requirements.

Bicycle Parking

The City of Santa Rosa's Municipal Code also stipulates the City's bicycle parking requirements for new developments. According to the City of Santa Rosa Municipal Code, bicycle parking is required for multifamily residential units at a ratio of one space per four units if units do not have a private garage or private storage space for bike storage. For the proposed project, bicycle parking would be adequate because the units have private garages for bicycle storage.

Conclusions and Recommendations

Conclusions

- The proposed project is expected to generate an average of 1,158 new daily vehicle trips, including 83 trips during the weekday morning peak hour and 108 trips during the weekday evening peak hour.
- The study intersections of Burbank Avenue with Sebastopol Road, Hughes Avenue, and Hearn Avenue are currently operating acceptably at LOS A overall during both peak hours, though it is noted that the southbound approach at Hearn Avenue/Burbank Avenue is operating at LOS F during both the a.m. and p.m. peak hours.
- The study intersections are expected to continue operating acceptably overall during both peak hours upon the addition of project-related traffic to Existing volumes. Although the southbound approach at Hearn Avenue/Burbank Avenue is expected to operate at LOS F during both peak hours, the project's impact would be considered less-than-significant as the intersection would operate acceptably overall.
- Under Baseline volumes, which include the addition of traffic associated with Roseland Accelerated Middle School, Roseland Village, and Sebastopol Road Town Homes, the study intersections would be expected to continue operating acceptably overall and the southbound approach at Hearn Avenue/Burbank Avenue would continue to operate with substantial delays. The intersection would drop to LOS E during the a.m. peak hour with the addition of project traffic, which would be considered a significant impact. It is noted, however, that without the Roseland Accelerated Middle School operation with the project and the remaining Baseline projects would remain at LOS C, indicating that the school is the primary trip generator contributing to the need for a traffic signal.
- The proposed pedestrian facilities along the project frontage are consistent with the planned improvements to Burbank Avenue outlined in the Santa Rosa Roseland Area/Sebastopol Road Specific Plan. Upon completion of the planned improvements to the rest of Burbank Avenue, pedestrian and bicycle facilities would be adequate.
- Site access and circulation is expected to operate acceptably.
- A left-turn lane would not be warranted on Burbank Avenue at either new street connection created by the project.
- The Peak Hour Volume Warrant indicating potential need for a traffic signal is met under Baseline and Baseline plus Project volumes during both the a.m. and p.m. peak hours at Hearn Avenue/Burbank Avenue. The need for a traffic signal is identified in the Specific Plan.
- All-way stop-controls are not warranted at the intersection of Hughes Avenue/Burbank Avenue under any scenario evaluated.
- The proposed parking supply satisfies City requirements. Bicycle parking is not necessary because private garages would provide adequate bicycle storage.

Recommendations

- Hearn Avenue/Burbank Avenue is planned to be converted to a signalized intersection in the future. The applicant should pay $\$ 96,000$ as a proportional share for the signalization project, as negotiated with City staff.
- The project should include installation of full frontage improvements consistent with the Santa Rosa Roseland Area/Sebastopol Road Specific Plan, though striping of the pavement to include a bike lane should be deferred until a more continuous facility can be provided.
- The applicant should request that the City of Santa Rosa consider initiating a CityBus route along Burbank Avenue to serve this developing area.

Study Participants and References

Study Participants

Principal in Charge
Associate Engineer
Assistant Engineer
Graphics
Editing/Formatting
Quality Control

Dalene J. Whitlock, PE, PTOE
Cameron Nye, EIT
Allison Woodworth, EIT
Katia Wolfe
Alex Scrobonia
Dalene J. Whitlock, PE, PTOE

References

2014 Collision Data on California State Highways, California Department of Transportation, 2017
California Manual on Uniform Traffic Control Devices for Streets and Highways, California Department of Transportation, 2014
Highway Capacity Manual, $6^{\text {th }}$ Edition, Transportation Research Board, 2018
Highway Design Manual, $6^{\text {th }}$ Edition, California Department of Transportation, 2017
Infrastructure Report for Roseland Area/ Sebastopol Road Specific Plan and Roseland Area Annexation, Michael Baker International, 2016
Intersection Channelization Design Guide, National Cooperative Highway Research Program (NCHRP) Report No. 279, Transportation Research Board, 1985
Method for Prioritizing Intersection Improvements, Washington State Transportation Center, 1997
Santa Rosa CityBus, http://srcity.org/1661/Maps-and-Schedules
Santa Rosa City Code, Quality Code Publishing, 2017
Santa Rosa General Plan 2035, City of Santa Rosa, 2014
Santa Rosa Roseland Area/Sebastopol Road Specific Plan, City of Santa Rosa, 2016
Sonoma County Transit, http://sctransit.com/
Statewide Integrated Traffic Records System (SWITRS), California Highway Patrol, 2013-2018
The Villas Traffic Impact Study, Final Report, W-Trans, December 23, 2005
Traffic Impact Study for the Roseland Accelerated Middle School, W-Trans, October 10, 2017
Traffic Impact Study for the Roseland Village Project, Final Report, W-Trans, June 14, 2018
Trip Generation Manual, $10^{\text {th }}$ Edition, Institute of Transportation Engineers, 2017

SRO496

This page intentionally left blank

Appendix A

Collision Rate Calculations

This page intentionally left blank

Intersection Collision Rate Calculations			
Traffic Impact Study for the Burbank Avenue Subdivision Project			
Intersection \# 1: Burbank Avenue \& Sebastopol Road			
Date of Count: Wednesday, September 11, 2019			
Number of Collisions: 16			
Number of Injuries: 6			
Number of Fatalities: 0			
ADT: 15700			
Start Date: December 1, 2013			
$\begin{aligned} \text { End Date: } & \text { November 30, } 2018 \\ \text { Number of Years: } & 5\end{aligned}$			
Intersection Type: Four-Legged Control Type: Signals Area: Suburban			
collision rate $=$	Number of Collisions $\times 1$ Million		
	ADT $\times 365$ Days per Year \times Number of Years		
collision rate $=$	16	$\mathrm{x} \quad 1,000,000$	
	15,700 x	365	$\times \quad 5$
	Collision Rate	Fatality Rate	Injury Rate
Study Intersection	0.56 c/mve	0.0\%	37.5\%
Statewide Average*	$0.43 \mathrm{c} / \mathrm{mve}$	0.4\%	37.9\%
ADT = average daily total vehicles entering intersection $\mathrm{c} / \mathrm{mve}=$ collisions per million vehicles entering intersection * 2013 Collision Data on California State Highways, Caltrans			
Intersection \# 2: Burbank Avenue \& Hughes Avenue Date of Count: Wednesday, September 11, 2019			
Number of Collisions: 2			
Number of Injuries: 1			
Number of Fatalities: 0			
ADT: 5100			
Start Date: December 1,2013			
Number of Years: 5			
Intersection Type: Four-Legged Control Type: Stop \& Yield Controls Area: Suburban			
collision rate $=\frac{\text { Number of Collisions } \times 1 \text { Million }}{\text { ADT } \times 365 \text { Days per Year } \times \text { Number of Years }}$			
collision rate $=$	2	$\mathrm{x} \quad 1,000,000$	
	5,100 x	365	$\times \quad 5$
	Collision Rate	Fatality Rate	Injury Rate
Study Intersection Statewide Average*	0.21 c/mve	0.0\%	50.0\%
	$0.26 \mathrm{c} / \mathrm{mve}$	0.9\%	37.4\%
ADT = average daily total vehicles entering intersection $\mathrm{c} / \mathrm{mve}=$ collisions per million vehicles entering intersection * 2013 Collision Data on California State Highways, Caltrans			

Intersection Collision Rate Calculaions

Traffic Impact Study for the Burbank Avenue Subdivision Project

Intersection \# 3: Burbank Avenue \& Hearn Avenue
Date of Count: Wednesday, September 11, 2019

Number of Collisions: 8
Number of Injuries: 6
Number of Fatalities: 0
ADT: 13400
Start Date: December 1, 2013
End Date: November 30, 2018
Number of Years: 5

Intersection Type: Four-Legged
Control Type: Stop \& Yield Controls
Area: Suburban
collision rate $=\frac{\text { Number of Collisions } \times 1 \text { Million }}{\text { ADT } \times 365 \text { Days per Year } \times \text { Number of Years }}$

collision rate $=$| | 8 | x | $1,000,000$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | 13,400 | x | | 365 | x |

	Collision Rate		Fatality Rate
Study Intersection	$0.33 \quad$ c/mve	0.0%	75.0%
Statewide Average *	$0.26 \quad$ c/mve	0.9%	37.4%

ADT = average daily total vehicles entering intersection
c/mve $=$ collisions per million vehicles entering intersection

* 2013 Collision Data on California State Highways, Caltrans

Appendix B

Intersection Level of Service Calculations

This page intentionally left blank

[^0]HCM 6th Signalized Intersection Summary

[^1]
WBT WBR SBLn1

[^2][^3]HCM 6th Signalized Intersection Summary

[^4][^5][^6]HCM 6th Signalized Intersection Summary

[^7][^8]| HCM 6th TWSC 2: Burbank Ave | \& Hu | ughes | Ave | | | | | | | | | | 10/29/2019 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intersection | | | | | | | | | | | | | |
| Int Delay, s/veh | 3.2 | | | | | | | | | | | | |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | |
| Lane Configurations | | ¢ | | | ¢ | | | ¢ | | | ¢ | | |
| Traffic Vol, veh/h | 29 | 17 | 40 | 32 | 19 | 9 | 25 | 418 | 14 | 7 | 315 | 25 | |
| Future Vol, veh/h | 29 | 17 | 40 | 32 | 19 | 9 | 25 | 418 | 14 | 7 | 315 | 25 | |
| Conflicting Peds, \#/hr | 2 | 0 | 0 | 0 | 0 | 2 | 10 | 0 | 0 | 0 | 0 | 10 | |
| Sign Control | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free | |
| RT Channelized | - | - | None | . | - | None | - | - | None | - | - | None | |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - | |
| Veh in Median Storage, | , \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - | |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - | |
| Peak Hour Factor | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| Mumt Flow | 29 | 17 | 40 | 32 | 19 | 9 | 25 | 418 | 14 | 7 | 315 | 25 | |
| Major/Minor Mi | Minor2 | | | Minor1 | | | Major1 | | | Major2 | | | |
| Conflicting Flow All | 843 | 834 | 338 | 845 | 839 | 427 | 350 | 0 | 0 | 432 | 0 | 0 | |
| Stage 1 | 352 | 352 | - | 475 | 475 | - | - | . | . | - | - | . | |
| Stage 2 | 491 | 482 | - | 370 | 364 | - | - | - | - | - | - | - | |
| Critical Hdwy | 7.12 | 6.52 | 6.22 | 7.12 | 6.52 | 6.22 | 4.12 | - | - | 4.12 | - | - | |
| Critical Hdwy Stg 1 | 6.12 | 5.52 | - | 6.12 | 5.52 | - | - | - | - | . | - | - | |
| Critical Hdwy Stg 2 | 6.12 | 5.52 | - | 6.12 | 5.52 | - | - | - | - | - | - | - | |
| Follow-up Hdwy | 3.518 | 4.018 | 3.318 | 3.518 | 4.018 | 3.318 | 2.218 | - | - | 2.218 | - | - | |
| Pot Cap-1 Maneuver | 284 | 304 | 704 | 283 | 302 | 628 | 1209 | - | - | 1128 | - | - | |
| Stage 1 | 665 | 632 | - | 570 | 557 | - | - | - | - | - | - | - | |
| Stage 2 | 559 | 553 | - | 650 | 624 | - | - | . | - | - | - | - | |
| Platoon blocked, \% | | | | | | | | - | - | | - | - | |
| Mov Cap-1 Maneuver | 256 | 291 | 698 | 248 | 289 | 627 | 1199 | - | - | 1128 | - | - | |
| Mov Cap-2 Maneuver | 256 | 291 | - | 248 | 289 | - | - | - | - | - | - | - | |
| Stage 1 | 642 | 622 | - | 555 | 542 | - | - | - | - | - | - | - | |
| Stage 2 | 516 | 538 | - | 591 | 614 | - | - | - | - | - | - | - | |
| | | | | | | | | | | | | | |
| Approach | EB | | | WB | | | NB | | | SB | | | |
| HCM Control Delay, s | 17.4 | | | 20.8 | | | 0.4 | | | 0.2 | | | |
| HCM LOS | C | | | C | | | | | | | | | |
| | | | | | | | | | | | | | |
| Minor Lane/Major Mvmt | | NBL | NBT | NBRE | EBLn1W | NBLn1 | SBL | SBT | SBR | | | | |
| Capacity (veh/h) | | 1199 | . | - | 376 | 287 | 1128 | . | - | | | | |
| HCM Lane V/C Ratio | | 0.021 | - | - | 0.229 | 0.209 | 0.006 | - | - | | | | |
| HCM Control Delay (s) | | 8.1 | 0 | - | 17.4 | 20.8 | 8.2 | O | - | | | | |
| HCM Lane LOS | | A | A | - | C | C | A | A | - | | | | |
| HCM 95th \%tile Q(veh) | | 0.1 | - | - | 0.9 | 0.8 | 0 | - | - | | | | |

HCM 6th Signalized Intersection Summary

[^9]HCM 6th TWSC
3: Burbank Ave \& Hearn Ave 10/29/2019

 \begin{tabular}{lrrrrrr}
\& Ninor Lane/Major Mvmt \& NBLn1 \& EBL \& EBT \& EBR \& WBL

WBT \& WBR SBLn1

\hline Capacity $($ veh/h) \& 156 \& 969 \& - \& -1128 \& - \& -162

HCM Lane V/C Ratio \& 0.192 \& 0.163 \& - \& -0.009 \& - \& -1.377

HCM Lane V/C Ratio \& 0.192 \& 0.163 \& - \& -0.009 \& - \& -1.377

\& 335 \& 94 \& \& - \& 02 \&

\hline
\end{tabular} HCMLane LOS $\quad 30.5 \begin{array}{llllll} & \text { D } & \text { A } & - & - & \text { A }\end{array}$ HCM 95th \%tile Q(veh) $\quad 0.7 \quad 0.6 \quad-\quad$. $\begin{array}{ll}\text { Notes } \\ \sim: & \text { Volume exceeds capacity } \quad \$ \text { : Delay exceeds } 300 s \quad+\text { : Computation Not Defined } \quad *: \text { All major volume in platoon }\end{array}$ $\begin{array}{lr}\begin{array}{l}\text { Burbank Avenue Subdivision TIS } \\ \text { AM Background Plus Project }\end{array} & \begin{array}{r}\text { Synchro } 10 \text { Report } \\ \text { Page } 3\end{array}\end{array}$

HCM 6th TWSC 3: Burbank Ave	$\& \mathrm{He}$	arn											10/29/2019
Intersection													
Int Delay, s/veh	19.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	7	\dagger		7	\dagger			*			¢		
Traffic Vol, veh/h	85	361	17	35	534	159	12	18	35	87	20	82	
Future Vol, veh/h	85	361	17	35	534	159	12	18	35	87	20	82	
Conflicting Peds, \#/hr	0	0	2	2	0	0	0	0	1	1	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None										
Storage Length	65	-	-	75	-	-	-	-	-	-	-	-	
Veh in Median Storage,	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mumt Flow	85	361	17	35	534	159	12	18	35	87	20	82	
Major/Minor M	Major1			Major2			Minor1			Minor2			
Conflicting Flow All	693	0	0	380	0	0	1277	1305	373	1251	1234	614	
Stage 1	-	-	-	-	-	-	542	542	-	684	684	-	
Stage 2	-	-	-		-	-	735	763	-	567	550	-	
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-	
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318	
Pot Cap-1 Maneuver	902	-	-	1178	-	-	143	160	673	149	177	492	
Stage 1	-	-	-	-	-	-	525	520	-	439	449	-	
Stage 2	-	-	-	-	-	-	411	413	-	508	516	-	
Platoon blocked, \%		-	-		-	-							
Mov Cap-1 Maneuver	902	-	-	1176	-	-	98	140	671	116	155	492	
Mov Cap-2 Maneuver	-	-	-	-	-	-	98	140	-	116	155	-	
Stage 1	-	-	-	-	-	-	475	470	-	398	436		
Stage 2	\cdot	-	-	-	-	-	317	401	-	419	466	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	1.7			0.4			29			132			
HCM LOS							D			F			
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		214	902	-	-	1176		-	181				
HCM Lane V/C Ratio		0.304	0.094	-	-	0.03			1.044				
HCM Control Delay (s)		29	9.4	-	.	8.2		-	132				
HCM Lane LOS		D	A	-	-	A		-	F				
HCM 95th \%tile Q(veh)		1.2	0.3	-	-	0.1	-	-	8.9				

[^10]$\begin{array}{lr}\text { Burbank Avenue Subdivision TIS } & \text { Synchro } 10 \text { Report } \\ \text { PM Background Plus Project } & \text { Page 3 }\end{array}$

Appendix C

Proposed Street Cross-Sections

This page intentionally left blank

Appendix D

Warrant Analyses

This page intentionally left blank

Turn Lane Warrant Analysis - 4 Legged Intersections
Study Intersection: Burbank Avenue/Project Driveway Study Scenario: AM Background plus Project

Direction of Analysis Street: North/South

Methodology based on Washington State Transportation Center Research Report Method For Prioritizing Intersection Improvements, Jan. 1997. The right turn lane and taper analysis is based on work conducted by Cottrell in 1981. The left turn lane analysis is based on work conducted by M.D. Harmelink in 1967, and modified by Kikuchi and Chakroborty in 1991.

Turn Lane Warrant Analysis - 4 Legged Intersections
Study Intersection: Burbank Avenue/Project Driveway Study Scenario: PM Background plus Project

Direction of Analysis Street: North/South

Methodology based on Washington State Transportation Center Research Report Method For Prioritizing Intersection Improvements, Jan. 1997. The right turn lane and taper analysis is based on work conducted by Cottrell in 1981. The left turn lane analysis is based on work conducted by M.D. Harmelink in 1967, and modified by Kikuchi and Chakroborty in 1991.

Warrant 3: Peak-Hour Volumes and Delay

Hearn Avenue \& Burbank Avenue
City of Santa Rosa

Project Name: Burbank Avenue Subdivision Project TIS

Intersection: 1

	Major Street	Minor Street
Street Name	Hearn Avenue	Burbank Avenue
Direction	E-W	N-S
Number of Lanes	1	1
Approach Speed	25	25

Population less than 10,000?
Date of Count:
Scenario:

No
Wednesday, September 11, 2019
AM Baseline

Warrant 3 Met?: Met when either Condition A or B is met
Condition A: Met when conditions A1, A2, and A3 are met Condition A1

Met

The total delay experienced by traffic on one minor street approach (one direction only) controlled by a STOP sign equals or exceeds four vehicle-hours for a one lane approach, or five vehicle-hours for a two-lane approach

Minor Approach Delay: $\quad 10.42$ vehicle-hours
Condition A2
The volume on the same minor street approach (one direction only) equals or exceeds 100 vph for one moving lane of traffic of 150 vph for two moving lanes

$$
\text { Minor Approach Volume: } 199 \text { vph }
$$

Condition A3
The total entering volume serviced during the hour equals or exceeds 800 vph for intersections with four or more appraches or 650 vph for intersections with three approaches

Total Entering Volume: 1424 vph
Condition B
The plotted point falls above the curve

Warrant 3: Peak-Hour Volumes and Delay

Hearn Avenue \& Burbank Avenue
City of Santa Rosa

Project Name: Burbank Avenue Subdivision Project TIS

Intersection: 1

	Major Street	Minor Street
Street Name	Hearn Avenue	Burbank Avenue
Direction	E-W	N-S
Number of Lanes	1	1
Approach Speed	25	25

Population less than 10,000?
Date of Count:
Scenario:

No
Wednesday, September 11, 2019
PM Baseline

Warrant 3 Met?: Met when either Condition A or B is met
Yes
Met
Condition A: Met when conditions A1, A2, and A3 are met Condition A1

Met

The total delay experienced by traffic on one minor street approach (one direction only) controlled by a STOP sign equals or exceeds four vehicle-hours for a one lane approach, or five vehicle-hours for a two-lane approach

Minor Approach Delay: 4.4 vehicle-hours
Condition A2
The volume on the same minor street approach (one direction only) equals or exceeds 100 vph for one moving lane of traffic of 150 vph for two moving lanes

$$
\text { Minor Approach Volume: } 173 \text { vph }
$$

Condition A3
The total entering volume serviced during the hour equals or exceeds 800 vph for intersections with four or more appraches or 650 vph for intersections with three approaches

Total Entering Volume: 1402 vph
Condition B
The plotted point falls above the curve

Warrant 3: Peak-Hour Volumes and Delay

Hearn Avenue \& Burbank Avenue
City of Santa Rosa

Project Name: Burbank Avenue Subdivision Project TIS

Intersection: 1

	Major Street	
Street Name	Hearn Avenue	Murbank Street
Direction	E-W	N-S
Number of Lanes	1	1
Approach Speed	25	25

Population less than 10,000?
Date of Count:
Scenario:

No
Wednesday, September 11, 2019
AM Baseline Plus Project

Warrant 3 Met?: Met when either Condition A or B is met
Yes
Met
Condition A: Met when conditions A1, A2, and A3 are met Condition A1

Met

The total delay experienced by traffic on one minor street approach (one direction only) controlled by a STOP sign equals or exceeds four vehicle-hours for a one lane approach, or five vehicle-hours for a two-lane approach

Minor Approach Delay: 15.9 vehicle-hours
Condition A2
The volume on the same minor street approach (one direction only) equals or exceeds 100 vph for one moving lane of traffic of 150 vph for two moving lanes

$$
\text { Minor Approach Volume: } 223 \text { vph }
$$

Condition A3
The total entering volume serviced during the hour equals or exceeds 800 vph for intersections with four or more appraches or 650 vph for intersections with three approaches

Total Entering Volume: 1456 vph
Condition B
The plotted point falls above the curve

Warrant 3: Peak-Hour Volumes and Delay

Hearn Avenue \& Burbank Avenue
City of Santa Rosa

Project Name: Burbank Avenue Subdivision

Major Street	Minor Street
Hearn Avenue	Burbank Avenue
E-W	N-S
1	1
25	25

No
Wednesday, September 11, 2019
PM Baseline Plus Project

Project TIS

Intersection: 1

Population less than 10,000?

Date of Count:
Scenario:

Warrant 3 Met?: Met when either Condition A or B is met	Yes
\quad Condition A: Met when conditions A1, A2, and A3 are met	Met
\quad Condition A1	$-\quad$ Met

The total delay experienced by traffic on one minor street approach (one direction only) controlled by a STOP sign equals or exceeds four vehicle-hours for a one lane approach, or five vehicle-hours for a two-lane approach

Minor Approach Delay: 6.93 vehicle-hours
Condition A2
The volume on the same minor street approach (one direction only) equals or exceeds 100 vph for one moving lane of traffic of 150 vph for two moving lanes

$$
\text { Minor Approach Volume: } 189 \text { vph }
$$

Condition A3
The total entering volume serviced during the hour equals or exceeds 800 vph for intersections with four or more appraches or 650 vph for intersections with three approaches

Total Entering Volume: 1445 vph
Condition B
The plotted point falls above the curve

California Manual on Uniform Traffic Control Devices (CaMUTCD)
 All-Way Stop Control (AWSC) Warrant Worksheet

Calc: AKW
Intersection \#:
2
Major Street:
Burbank Avenue
Minor Street:
Hughes Road
Existing Control:
Volume Count Date:
Two-Way Stop

Speed Count Date: N/A
$\begin{array}{cc}\text { At least one warrant satisfied? } & \text { No } \\ \text { Optional Warrants Satisfied? } & 0\end{array}$

WARRANT A - Interim Measure
Satisfied? No

CaMUTCD Language

Condition A: Where traffic control signals are justified, the multi-way stop is an interim measure that can be installed quickly to control traffic while arrangements are being made for the installation of the traffic control signal.

Are traffic control signals justified at this location? No
WARRANT B - Crash History
Satisfied? No

CaMUTCD Language

Condition B: Five or more reported crashes in a 12-month period that are susceptible to correction by a multi-way stop installation. Such crashes include right-turn and left-turn collisions as well as right-angle collisions.

	Crashes	Minimum
	Total in a 12-month period	1
-		
Total in a 12-month period susceptible to correction by AWSC	1	5

WARRANT C - Eight Hour Volume

C.1+C. 2 or C. 3 Satisfied?

CaMUTCD Language

Condition C.1: The vehicular volume entering the intersection from the major street approaches (total of both approaches) averages at least 300 vehicles per hour for any 8 hours of an average day; and
Condition C.2: The combined vehicular, pedestrian, and bicycle volume entering the intersection from the minor street approaches (total of both approaches) averages at least 200 units per hour for the same 8 hours, with an average delay to minor-street vehicular traffic of at least 30 seconds per vehicle during the highest hour.

Hour		C. 1 Volume	C. 2 Volume
7:00	8:00	400	97
8:00	9:00	533	122
13:00	- 14:00	440	83
14:00	- 15:00	279	54
15:00	- 16:00	344	69
16:00	- 17:00	367	57
17:00	- 18:00	431	83
18:00	- 19:00	335	67

	Average Volume	Minimum	Satisfied?
C.1	391	300	Yes
C.2	79	200	No

	Peak Hour Delay	Minimum	Satisfied?
C.2	14	30	No

Peak Hour
$7: 30-8: 30$

California Manual on Uniform Traffic Control Devices (CaMUTCD)

All-Way Stop Control (AWSC) Warrant Worksheet

Intersection \#:	2
Major Street:	Burbank Avenue
Minor Street:	Hughes Road

CaMUTCD Language
Condition C.3: If the 85th-percentile approach speed of the major-street traffic exceeds 40 mph , the minimum vehicular volume warrants are 70 percent of the values provided in Items 1 and 2 .

	Value	Minimum	Satisfied?
C.1. Major Street Entering Vehicles (Both Approaches)	391	210	Yes
C.2. Minor Street Entering Vehicles, Pedestrians, and Bicycles (Both Approaches)	79	140	No
C.2. Minor Street Peak Hour Vehicle Delay (Seconds)	14	21	No
C.3. Major Street 85th-percentile Speed	N/A	41	No

CaMUTCD Language

Condition D: Where no single criterion is satisfied, but where Criteria B, C.1, and C. 2 are all satisfied to 80 percent of the minimum values. Criterion C. 3 is excluded from this condition.

	Value	Minimum	Satisfied?
B. Crashes in 12-month period susceptible to correction by AWSO	1	4	No
C.1. Major Street Entering Vehicles (Both Approaches)	391	240	Yes
C.2. Minor Street Entering Vehicles, Pedestrians, and Bicycles (Both Approaches)	79	160	No
C.2. Minor Street Peak Hour Vehicular Delay (Seconds)	14	24	No

OPTIONAL WARRANTS

0 Optional Warrants Satisfied

A The need to control left-turn conflicts
Satisfied? No

B The need to control vehicle/pedestrian conflicts near locations that generate high Satisfied? No pedestrian volumes

C Locations where a road user, after stopping, cannot see conflicting traffic and is not able to negotiate the intersection unless conflicting cross traffic is also required to stop

D An intersection of two residential neighborhood collector (through) streets of similar Satisfied? No design and operating characteristics where multi-way stop control would improve traffic operational characteristics of the intersection

[^0]: Synchro 10 Report
 Page 2
 $\begin{array}{lr}\text { Burbank Avenue Subdivision TIS } & \text { Synchro } 10 \text { Repor } \\ \text { AM Existing } & \text { Page } 2\end{array}$

[^1]: Synchro 10 Report
 Page 1

[^2]: Synchro 10 Report

[^3]: Synchro 10 Report
 Page 2
 $\begin{array}{lr}\text { Burbank Avenue Subdivision TIS } & \text { Synchro } \\ \text { AM Background } & \text { Page 2 }\end{array}$

[^4]: Synchro 10 Report
 Page 1

[^5]: Synchro 10 Report
 Page 3

[^6]: Synchro 10 Report
 Page 2
 $\begin{array}{lrl}\text { Burbank Avenue Subdivision TIS } & \text { Synchro } & \text { Repor } \\ \text { AM Existing Plus Project } & \text { Page } 2\end{array}$

[^7]: Synchro 10 Report
 Page 1

[^8]: Synchro 10 Report
 Page 2

 Burbank Avenue Subdivision TIS
 AM Background Plus Project

[^9]: Synchro 10 Report
 Page 1

 Burbank Avenue Subdivision TIS
 PM Background Plus Project

[^10]: Synchro 10 Report
 Page 3

