2020 Drinking Water Quality Report Update

Board of Public Utilities Meeting June 17, 2021 Tony Llamas, Water Quality Supervisor

Compliance with the Safe Drinking Water Act (SDWA)

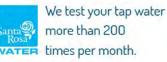
Federal Rules – Public drinking water quality:

- Total Coliform Rule
- Disinfectants/Disinfection By-Products Rule
- Lead and Copper Rule
- Groundwater Rule

State Regulations - Cross Connection Control

Annual Water Quality Report provides:

- Water system information
- Testing Information
- Definitions
- How to read Section
- Water Quality Results
- Water Saving Tips
- Rebuild Updates


REPORTED JUNE 2021

Water Quality Report Distribution

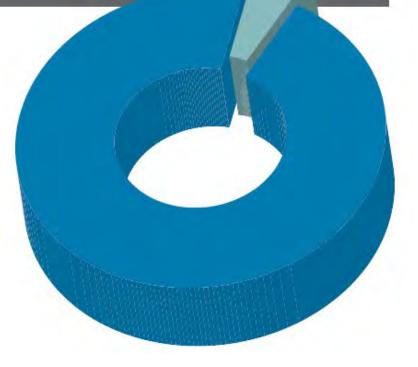
- Press Democrat Ads
- Bill Insert
- Email and E-newsletter
- Social Media
- Mailings
- Printed copies

Quality matters.

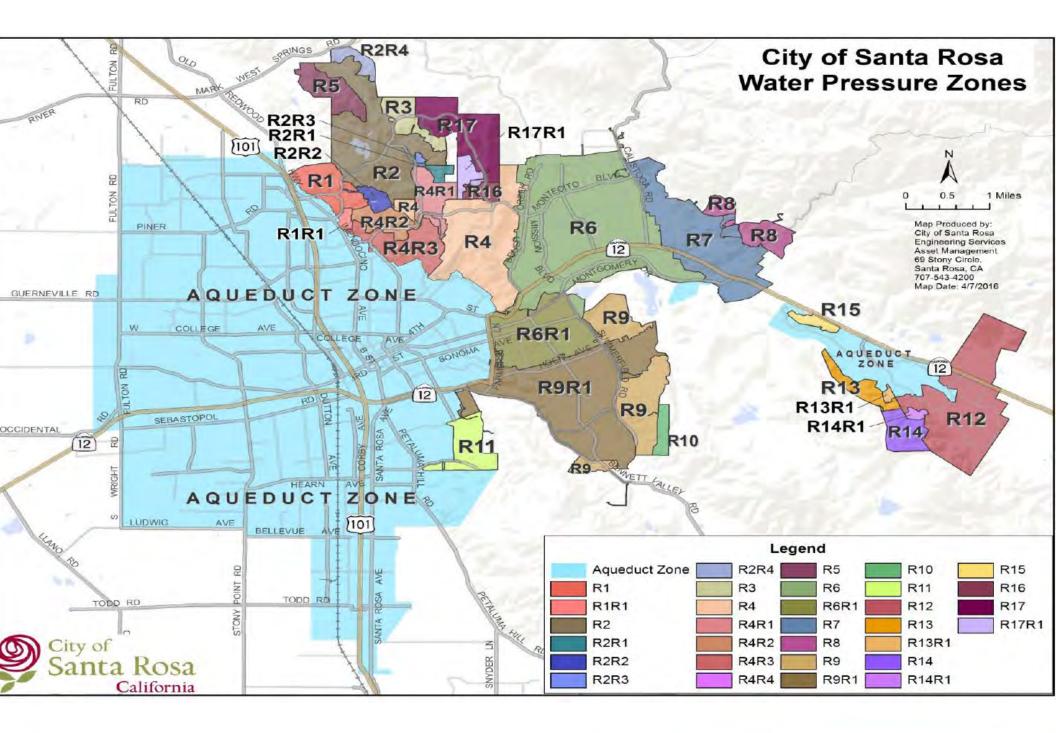
View our Annual Water Quality Report online.

VIEW ONLINE... Srcity.org/waterqualityreports FOR A PRINTED COPY ... Waterquality@srcity.org 707.543.3965

Santa Rosa WATER

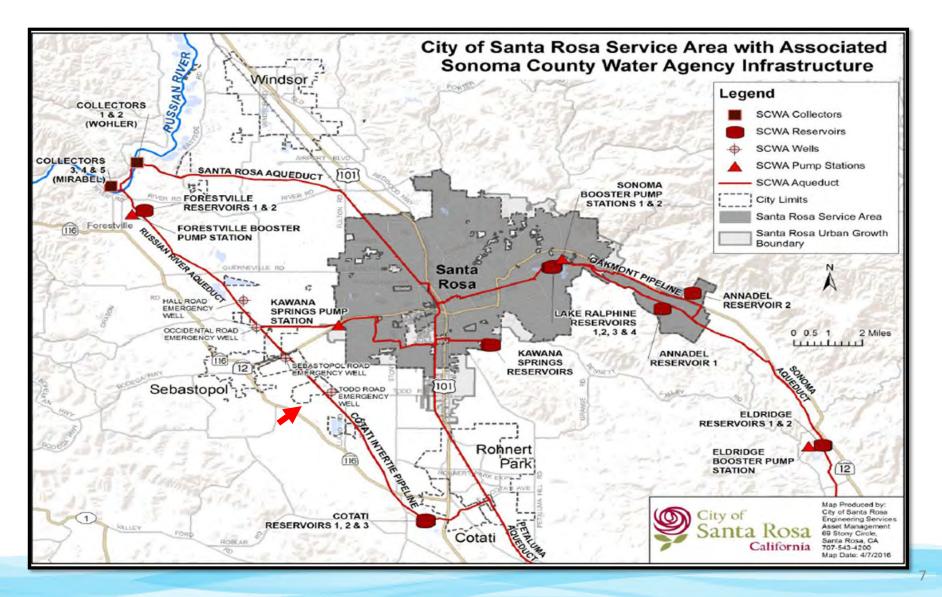

OUR FUTURE IN EVERY DROP

your drinking water is tested 2000times before reaching your tap!


Water Supply Portfolio

As a Santa Rosa Water customer you are connected to Santa Rosa's public water system. The water supplied to homes and businesses is a combination of surface water from the Russian River and local groundwater.

95% Water Agency (Russian river)5% Groundwater



Sonoma Water Transmission Lines

90 miles of pipelines from 12 to 54 inches

Field Sampling covers all areas of our water system

Farmers Lane Well -Water Treatment Plant Samples

Sonoma County Water Agency - Caissons 1 thru 6 - 2020 Water Quality Report

CLARITY OF WATER FROM GROUNDWATER SOURCES	MCL 5 ^m	Units NTU	Sample Frequency continuous		Caisson 1 average 0.035 range (0.013 - 2.0)	Caisson 2 average 0.031 range (0.014 - 2.0)	Caisson 3 average 0,031 range (0.017 - 2.0)	Caisson 4 average 0.031 range (0.013 - 2.0)	Caisson 5 average 0.039 range (0.025 - 2.0)	Calsson 6 average 0.031 range (0.021 - 2.0)
	MCL			Units		# Samples	Distribution System Monitoring for 2020			
MICROBIOLOGICAL - Coliform Bacteria	< 2 positive samples per month > 95% per month		er month	th colliforms/100ml		.527				
DISINFECTANT - Total Chlorine Residual			deteotable residual mg/L		561 72	Detectable residual in 100% of samples taken average = 0.0108 mg/L tange = (0.0082 mg/L 0.0100 mg/L)				
Total Trihalomethanes (2) - Tank Samples	0.080									
VOLATILE ORGANIC COMPOUNDS	Units	STATE	DLR	PHG	Calsson 1	Carsson 2	Caisson 3 Caisson 4 Caisson 5 Cai			
Section 64444 - Table A		MCL	10002	(MCLG)	15-Sep-20	15-Sep-20	18-Sep-20	18-Sep-20	18-Sep-20	15-Sep-20
Benzene	mg/L	0.001	0,0005	0.00015	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	mg/L	0.0005	0.0005	0 0001	ND	ND.	ND.	ND	ND	ND
1.2-Dichlorobenzene (o-DCB)	mg/L	0.6	0.0005	0.6	ND	ND.	ND	ND	ND	ND
1,4-Dichlorobenzene (p-DCB)	mg/L	0.005	0.0008	0,006	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane (1,1-DCA)	mg/L	0.005	0.0005	0.003	ND	ND	ND	ND	ND	ND
1.2-Dichloroethane (1.2-DCA)	mg/L	0.0005	0,0005	0.0004	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene (1,1-DCE)	mg/L	0,008	0.0005	0.01	ND	ND	ND	ND	ND	ND
cis-1 2-Dichlorethylene (c-1,2-DCE)	mg/L	0.006	0.0005	0.013	ND	ND	ND	ND	ND	ND
trans-1.2-Dichloroethylene (t-1.2-DCE)	mg/L	0.01	0.0005	0.05	ND	ND	ND	ND	ND	ND
Dichloromethane (Methylene Chlonde)	mg/L	0.005	0.0005	0.004	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	mg/L	0.005	0.0005	0.0005	ND	ND	ND	ND	ND	ND
1,3-Dichloropropene (Cis & Trans)	mg/L	0.0005	0.0005	0.0002	ND	ND	ND	ND	ND	ND
Ethylbenzene	mg/L	6.3	0.0005	0.3	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE) 14	mg/L	0.013	0.003	0.013	ND	ND	ND	ND	ND	ND
Monochlorobenzene (Chlorobenzene)	mg/L	0,07	0.0005	0.07	ND	ND	ND	ND	ND	ND
Styrene	mp/L	0.1	0.0005	0.0005	ND	ND	ND	ND	ND	ND
1,1,2.2-Tetrachloroethane	mg/L	0.001	0.0005	0.0001	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	mg/L	0,005	0.0005	60000.0	ND	ND	ND	ND	ND	ND
Toluene	mg/L	0.15	0.0005	0.15	ND	ND	ND	ND	ND	ND
1.2.4-Trichlorobenzene	mg/L_	0.005	0.0005	0,005	ND	ND.	ND	ND	ND	ND
1,1.1-Trichloroethane (1,1.1-TCA)	mg/L	02	0.0005	1.0	ND	ND	ND	ND	ND	ND
1:1,2-Trichloroethane (1,1,2-TCA)	mg/L	0.005	0.0005	0.0003	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	mg/L	0.005	0.0005	0.0017	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane (Freon 11)	mg/L	0.15	0.005	1.3	ND	ND	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-Trifluomethane (Freen 113)	mg/L	1.2	0.01	4	ND	ND	ND	ND	ND	ND
Vinyl Chlaride (VC)	mg/L	0.0005	0.0005	0.00005	ND	ND	ND	ND	ND	ND
Xylenes (m.p. & o)	mg/L	1.75	0.0005	1.8	ND.	ND.	ND	ND	ND	ND

" Turbidity: Annual average is the mean of the monthly average values, weighted by hours of pump operation each month.

Range refers to the minimum and maximum Turbidity readings recorded by the online Turbidimeters at each site.

Total Trihalomethanes: 40 CFR Section 141.12 - Is the sum of the concentrations of Bromodiohloromethane, Dibromochloromethane, Bromoform, and Chloroform.

111 Secondary Standard.

111 Methyl tert-butyl ether (MTBE) is listed in both the Primary (Organic Chemicals - VOCs) and Secondary Standards.

2020 Water Quality Sampling Results

				SONOMA	WATER	SANTA ROSA ²		
Substance (Parameter)	Public Health Seel (BDDC)		Mercinoum Contaminant	Balance Balance	Reperting	Range Detacled	Reporting Value	Major Source is Drinking Water
STANDARY STANDARDS Reported in	Ingristed Contaminant	is with Primar	WCLS or WHOLS			-		
	-							
Rhonida (ppnić ¹	1	0.1	2.8	80	80	0.15-0.22	8.2	Erroam it natival doposits
Mittale (as N ppec)	18	6.4	10	80	80	KD	ND.	Recting from septic lanks and
STRUCTURE STSTEM DETECTO	WS 2020							sewage; master of instant deposits
Tatal Cultorn Bacteria Nun Santa Resa Distribution System	10		5% of monthly camples	**	ж	8	8%	Antonny present in the environment
Tetal Trinsformettiones (ppi))	#5		80	84	MA.	20.5-29.6	25.5	By product of drawing wales chilingation
Haloacette Acitts (ppb)	NS		50	84	MA.	3.9-11.1	7.5	By-product of dilaking water chlorisation
Ostriectari Are Chimine Ci.) Resultar (pp.e)	MRDLG as		MROLG as	84	84	0.00-1.95	117	Desintectant to control extendes
pH cause policy to p57	- 10-				1.1			
adjestaanid	#S		NS	725-7.57	7.4	7.5-8.5	8.0	Sodium Hydroxide addition
Bearson (pp0)	8.15	4.5	(1)	- 80	-	KD	KD	Discharge Term plastics, dyes and refer tacinities; leaching from gas slocage tanks and tandhits
TALKOPPOSED	Monifored at co	stomer's tep	A of sites accord	ating action toron	-0 Fotsamp	las collectual=30	# of schools s	ampioi =0
Capper (pped	8.3	8.05	1300	<1.05	<0.05	0.013-0.171	0.105*	Informati corresson of lanesebolik
Lead (ppb)	0.2	5	15 (AL)	< 5.0	<5.0	8.2-5.3	1.8"	pionibing, oresion of natural depests
I AN SAMPLING INSCIPTOLS	d of sites eacon	ting action i	mill dalam	plan collecture 3	22 dief schmit	s samplificati		
COMINANY STANDARDS Accel	ie Standards Establis	theid by the Sta	ie Water Researces Can	that Beard's Deising	al Bristing Water			
R COLUMN CORRESS	There are no ad	warme booking	officits from eacher	ding the second	ry (asstantic) st	inedire to		
Threshold Odor Number (TOM) at 60°C	MS	1	3	<1.0	<1.0	HDK	ND	Railurally scentting organic materials
Chilaride (ppind)	KS		500	51-5.4	5.2	17.6-73.8	20.7	Kan-off/biocomy from asthesi deposite
Sattale (ppm)	KS	0.5	500	11-12	11.7	ND-1.3 ⁶	8.65	Ran-off/loaching from natural deposits
Specific Conductance								
lankes(m)	KS		1600	230-268	240	440-520*	480	Salislances list item into when in wele
inter (lissofeed Solids Open)	RS .		1000	120-150	133	340-360*	350	Kan of Utosching from national deposite
Calor (units)	#S		15	4.0-9.0	5.0	NOv	ND	Naturally occurring argumic materials
Wanganese (ppb)	RS.	20	50	<20	<20	1.0-7.2	3.8	Ran-off/leaching iron soliutal deposits
HIRTOWAL CONSTITUTIONS	KS		85	75-11	8.3	51.1-53.5*	52.3	Sedum refers to the soft present in water. It is not early accounting
kanninna constituents Sadinin (ppin)			HS-	101-122	***	140-1435	141,5	Ension of natural deposits
	#S		NS	85-110	100	220-230*	225	Exection of mailural deposities
Sadinm (ppm)	15				22	26.9-28.26	27.5	Excision of matural disposits
Sadinni (ppn) Retai Hardness CaCO, (ppn) Retai Alkahety CaCO, (ppn)	and the second s		NS	20-24		441-539	490	Found in the soil lineuphont the U.S.
Sadinin (ppin) Bitar Hardness CaCO, (ppin) Bitar Alkalinity CaCO, (ppin) Calchini (ppin)	#5	100	NS NS	20-24 82.4-114	162	941-918.		
Sadinın (qqun) Tatar Hardness CaCD, (qqun) Tatar Alkaharly CaCD, (qqun) Calcium (qqun) Tatar Kadan 222 (qCDA) ⁴	#5 #5	100		Color Color	162 MA	8.8 (48) - 28 (82)	18(64)	Waler lemp. In Dishtbullare System
Sadam (ppm) Retai Hardness CaCO, (ppm)	NS NS NS December of sur		NS NS Martug kolps EPA an	82.4-114 NA	RA .	8.8 (48) - 28 (82)	18(64)	Water temp. In Dishtbulane System corr and it regulation is required.
Sadium (yyon) Rotal Hardness CaiCD, (yyon) Iatal Alkahnity CaiCD, (ppen) Caiclaw (ppen) Iatal Kadan 222 (pCDA) ⁴ Rompetaliane °C (°F) Rompetaliane °C (°F) Rompetaliane °C (°F)	NS NS NS December of some NS		NS NS Hartug kolps EPA an NS	82.4-114 NA	RA .	8.8 (48) - 28 (82)	10(64) etapinants oc 1.2	cor and it regulation is required. By product of dening scalar cilimitation
Sadinan (yyon) Retal Hardness CaCO, (yyon) Iatal Alkoherty CaCO, open) Calcium (ypei) Iatal Kadon 222 (yCAN) ⁴ Respectature °C (*) metorauco sectometo scian of	NS NS NS Derogeistof su NS NS		NS NS Hortog kolps EP4 an NS NS	82.4-114 NA	RA .	8.8 (48) - 28 (82) deformine where co ND-2.85 ND-3.5	10(64) etapinants oc 1.2 1.6	
Sadimu (yyun) Intal Hardwess CaiCD, (yyun) Intal Alkahuly CaiCD, (ppen) Caichan (ppen) Intal Kadan 222 (pCDA) ⁴ Intapesdiane °C (°F) Intalexa cai suctawase acom of Envenanted Haliaachic Acids	NS NS NS December of some NS		NS NS Hartug kolps EPA an NS	82.4-114 NA	RA .	8.8 (48) - 28 (82) determine where co ND-2.85	10(64) etapinants oc 1.2	cor and it regulation is required. By product of dening scalar cilimitation

Questions?

